首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=(a-1)x12+(a-1)x22+2x32+2x1x2(a>0)的秩为2. 求a;
设二次型f(x1,x2,x3)=(a-1)x12+(a-1)x22+2x32+2x1x2(a>0)的秩为2. 求a;
admin
2018-05-23
42
问题
设二次型f(x
1
,x
2
,x
3
)=(a-1)x
1
2
+(a-1)x
2
2
+2x
3
2
+2x
1
x
2
(a>0)的秩为2.
求a;
选项
答案
A=[*],因为二次型的秩为2,所以r(A)=2,从而a=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/z2g4777K
0
考研数学一
相关试题推荐
设A为2阶矩阵,α1,α2为线性无关的2维向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
矩阵相似的充分必要条件为
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为试求y=f(x)所满足的微分方程,并求该微分方程满足条件的解.
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1,不失一般性地设X1为连续型随机变量,证明:对任意的常数λ>0,有。(不熟者可对n=2证明)
计算,其中∑为半球面的内侧.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
已知f(x1,x2,x3)=的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
交换积分次序=______。
随机试题
人类免疫缺陷病毒的特点哪项不正确
建设工程项目初步设计的深度应能满足()的要求。
某车床传动系统图如图1所示,带传动滑动系数s为0.94,齿轮传动效率η=1。试问:1.轴I的转速有多少种?2.轴I上的3个齿轮都带有“×”号,是代表什么?3.轴Ⅱ上的两组齿轮都各带有“-”,是代表什么?4.主轴(轴Ⅳ)的转速共有多少种?5.图
国内1日游旅游者,指我国大陆居民未在我国任何地方过夜,他们离开常住地和出游时间为()。
为了满足生产和客户需要,以最快时间运送是物流系统运作的______原则。
下列人物中,属于新古典主义的是()。
不属于公文秘密等级的是()。
在计算机网络拓扑结构中,()拓扑结构是将网络的各个节点通过中继器连接成一个闭合环路。
CertainphrasesonecommonlyhearsamongAmericanswhich(1)toindividualisminclude:"Doyourownthing.""Ididitmyway."
人类自有文化就有文化交流。人类文化从整体来说,是各国、各国民族文化汇聚,交流的产物。现代国际间的文化交流,更足以空前的规模、内容、形式和手段,在直接间接地进行着。当今的世界,既非丝绸之路时代,亦非马可波罗时代。从上海去东京,只需两个多小时,相当于从北京到杭
最新回复
(
0
)