首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
admin
2018-11-20
44
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,一3a)
T
,α
3
=(一1,一b一2,a+2b)
T
,β=(1,3,一3)
T
.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化为线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,β不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*]而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/z5W4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
n维列向量组α1,…,αn一1线性无关,且与非零向量β正交,证明:α1,…,αn一1,β线性无关.
设α1=α2=α3=线性相关,则a=________.
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是________.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
二阶常系数非齐次线性方程y"—4y’+3y=2e2x的通解为y=________。
已知齐次线性方程组同解,求a,b,c的值。
已知方程组有解,证明:方程组无解。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
随机试题
脊髓空洞症最常见于下列哪种疾病
化脓性脑膜炎主要传播途径是( )。
头颅摄影的常规体位是
流行性乙型脑炎的病变类型是属于
销售货物并向购买方开具专用发票后,如发生退货或销售折让的情况,下列处理正确的是( )。
某市甲公司2012年的有关资料如下:(1)甲公司年初自有房屋10栋,其中7栋房屋用于生产经营(房产原值合计为50000000元),3栋房屋自2012年1月1日起出租给乙公司作经营用房,年租金收入为1000000元;8月20日甲公司新建厂房完工,由
大脑皮质的颞上回是()。
"Embarrassment","occasionally"and"necessary"havebeennamedamongthewordsBritshavemostd【C11】______inspelling.Resear
break语句不能出现在()语句中。
TheStudentUnionhasrecentlyagreedtosetupanEnglishClub.ItaimstoencouragestudentstolearnEnglishoutsideofclass
最新回复
(
0
)