首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
admin
2017-04-19
39
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1)[*] 因秩(A)=n,故A可逆,且[*]从而(A
-1
)
T
=(A
T
)
-1
=A
-1
,故A
-1
也是实对称矩阵,因此二次型f(x)的矩阵为 [*] (2)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以A与A
-1
合同,
解析
转载请注明原文地址:https://kaotiyun.com/show/z5u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
用指定的变量替换法求:
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,α3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=__________.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
随机试题
下列有关置信区间的定义中,正确的是()。
断面深棕黄色,角质,具蜡样光泽的药材为( )。
波兰尼认为人类的知识有两种:通常被描述为知识的,即以书面文字、图表和数学公式加以表述的,只是一种类型的知识;而未被表述的知识,像我们在做某事的行动中所拥有的知识,是另一种知识。他把前者称为显性知识,而将后者称为隐性知识,也称为未明言知识。所谓显性知识,即能
利用电信网从事()活动的,将受到刑法处罚。
如果是连续审计业务,在下列情况中,需要注册会计师提醒被审计单位管理层关注或修改现有业务的约定条款的是()。
见表4-1,该表是某项目成本构成比例,请根据图表回答下面的问题:从表中可以看出,成本项目中,机械使用费________。
血浆包括各种矿物质、糖类、脂类、蛋白质、激素和维生素等。在上述各种物质中,造成血液颜色为红色的是()。
下列哪一种肿瘤的恶性类型不能归入癌
张先生认识赵、钱、孙、李、周5位女士。(1)5位女士分为两个年龄档:3位女士小于30岁,2位女士大于30岁;(2)2为女士是教师,其他3位女士秘书;(3)赵和孙属于相同年龄档;(4)李和周不属于相同年龄档;
在进行模块测试时,要为每个被测试的模块另外设计两类模块:驱动模块和承接模块,其中______的作用是将测试数据传送给被测试的模块,并显示被测试模块所产生的结果。
最新回复
(
0
)