首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
admin
2019-05-11
71
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
(1)存在可逆矩阵P,使得P
T
AP,P
T
BP都是对角矩阵;
(2)当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
(1)因为A正定,所以存在实可逆矩阵P
1
,使得P
1
T
AP
1
=E.作B
1
=P
1
T
BP
1
,则B
1
仍是实对称矩阵,从而存在正交矩阵Q,使得Q
T
B
1
Q是对角矩阵.令P=P
1
Q,则 P
T
AP=Q
T
P
1
T
AP
1
Q=E,P
T
BP=Q
T
P
1
T
BP
1
Q=Q
T
B
1
Q.因此P即所求. (2)设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
3
,…,λ
n
,记 M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/z8V4777K
0
考研数学二
相关试题推荐
证明:r(A)=r(ATA).
设(Ⅰ)的一个基础解系为写出(Ⅱ)的通解并说明理由.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A=,求A的特征值,并证明A不可以对角化.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
将积f(χ,y)dχdy化成极坐标形式,其中D为χ2+y2=-8χ所围成的区域.
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
随机试题
禁煙教値のない目標なんて健やかに過ごしたい。新しい年へのそんな願いは、早々と裏切られた。喫煙率を下げる数値目標が、またしても撤回されてしまったのだ。たばこ対策は、国民の健康を守るうえで最優先であるはずだ。とうてい納得がいかない。日本で、
社会主义首要的基本理论问题是
某公司拟投标某市政工程,招标单位提供的招标文件提供了工程量清单。该公司在购买标书后,对报价部分采用了如下计算方法:工程量直接使用清单数量,价格使用造价管理处的信息价格。由于措施项目清单中只列了项目,没有给出具体工程量,因没有依据,所以这部分内容未予报价。全
阅读关于“台湾省”的图文资料,按要求完成教学设计任务。材料一《义务教育地理课程标准(2011年版)》中的内容标准要求:“认识台湾省自古以来一直是祖国不可分割的神圣领土;在地图上指出台湾省的位置和范围,分析其自然地理环境和经济发展特色。”
婆罗门教
根据多恩布什的“汇率超调理论”,汇率之所以在受到冲击后会作出过度反应,是因为()。
操作是类中对象所使用的一种功能或变换。类中的各个对象可以共享操作,方法是类中操作的 ______ 。
下面关于CAN的叙述中,错误的是()。
Theblue,mysticLakeEllsinoreliesinaninlandCaliforniavalley,whichisteemingandsteamingwithhotsprings.Rimmedbys
THEILLUSIONOFFILM1Filmisanillusionbecausethemovingpicturesseenonthescreenarenotmovingatall.Afilmisact
最新回复
(
0
)