首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=1,f(0)=0,证明:在(0,1)内至少有一点ξ,使得eξ-1[f(ξ)+f′(ξ)]=1.
已知f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=1,f(0)=0,证明:在(0,1)内至少有一点ξ,使得eξ-1[f(ξ)+f′(ξ)]=1.
admin
2020-05-02
30
问题
已知f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=1,f(0)=0,证明:在(0,1)内至少有一点ξ,使得e
ξ-1
[f(ξ)+f′(ξ)]=1.
选项
答案
方法一 令F(x)=e
x
f(x)-ex,由于f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=1,f(0)=0,所以F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0.由罗尔定理知,在(0,1)内至少存在一点ξ,使得F′(ξ)=0,而F′(x)=e
x
f(x)+f′(x)]-e,所以e
ξ
(ξ)+f′(ξ)]-e=0,e
ξ-1
[f(ξ)+f′(ξ)]=1. 方法二 令F(x)=e
x
f(x),由于f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=1,f(0)=0,所以F(x)在[0,1]上连续,在(0,1)内可导,F(0)=0,F(1)=e.由拉格朗日中值定理知,在(0,1)内至少存在一点ξ,使得 [*] 由于F′(x)=e
x
[f(x)+f′(x)],所以 [*] 即e
ξ-1
[f(ξ)+f′(ξ)]=1,ξ∈(0.1).
解析
转载请注明原文地址:https://kaotiyun.com/show/zUv4777K
0
考研数学一
相关试题推荐
某商品一周的需求量X是随机变量,已知其概率密度为假设各周的需求量相互独立,以Uk表示k周的总需求量,试求:接连三周中的周最大需求量的概率密度f(3)(x).
设总体X的密度函数f(x)=,S2分别为取自总体X容量为n的样本的均值和方差,则=___________;ES2=___________.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|一μ|≥2}≤__________.
设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于_________.
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
设两个随机变量X,Y相互独立,且都服从均值为0、方差为的正态分布,求随机变量|X—Y|的方差。
设则级数()
飞机以匀速v沿y轴正向飞行,当飞行到原点时被发现,随即从x轴上点(x0,0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.求导弹的运行轨迹方程及导弹自发射到击中目标所需的时间T.
随机试题
电液换向阀是由_______和_______组成的复合阀。其优点是可用较小的_______来控制大流量的_______换向。
下列沟通方式中,具有快速传递、快速反馈、信息量很大,但是传递中经过层次愈多信息失真愈严重、核实愈困难的是()
下列小说由当代著名女作家张洁创作的是()
患者,男,20岁。突发上腹剧痛3小时,怀疑消化道穿孔,无休克表现,为进一步明确诊断,首选的检查方法是
会计职业道德首先是调整社会人际关系行为规范的总和。()
甲用10000元人民币购买了一块和田玉,他将这块和田玉转卖给乙,获利5%,乙而后又将这块和田玉卖给甲,但乙损失了5%,最后甲按乙卖给自己的价格的9.6折将这块和田玉又卖给了乙,则在上述交易中:
TheprofessortalkedtoAmericanandBrazilianstudentsaboutlatenessinbothaninformalandaformalsituation:lunchwitha
URL(统一资源定位器)主要包括3部分:协议类型、【 】和路径及文件名。
数据管理技术发展的三个阶段中,()没有专门的软件对数据进行管理。I.人工管理阶段II.文件系统阶段III.数据库阶段
Whatdoweknowabouttheman?
最新回复
(
0
)