首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵, α1=[1,2,-2]T, α2=[2,1,-1]T, α3=[1,1,t]T 是线性非齐次方程组AX=b的解向量,其中b=[1,3,-2]T,则( )。
设A是三阶矩阵, α1=[1,2,-2]T, α2=[2,1,-1]T, α3=[1,1,t]T 是线性非齐次方程组AX=b的解向量,其中b=[1,3,-2]T,则( )。
admin
2015-11-16
57
问题
设A是三阶矩阵,
α
1
=[1,2,-2]
T
, α
2
=[2,1,-1]
T
, α
3
=[1,1,t]
T
是线性非齐次方程组AX=b的解向量,其中b=[1,3,-2]
T
,则( )。
选项
A、t=-1,必有r(A)=1
B、t=-1,必有r(A)=2
C、t≠-1,必有r(A)=1
D、t≠-1,必有r(A)=2
答案
C
解析
[解题思路] 令B=[α
1
,α
2
,α
3
],则
AB=[b,b,b],r(AB)=r([b,b,b])=1。
注意到t≠-1时,r(B)=3,从而r(AB)=r(A)=1,也可由方程组AX=b解的结构原理直接推出r(A)=1。
解一 将已知关系式Aα
i
=b(i=1,2,3)合并成一个矩阵等式:
A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[b,b,b]=
,
令 B=[α
1
,α
2
,α
3
]=
,
则 AB=[b,b,b]。
当t=-1时,因B中第2,3行成比例,故r(B)=2,这时由r(AB)=1只能得到r(A)≥r(AB)=1,(A)、(B)都不对,
当t≠-1时,因r(B)=3,故r(AB)=r(A)=1,仅(C)入选。
解二 B=[α
1
,α
2
,α
3
]=
,
当t≠-1时,r(B)=3,从而α
1
,α
2
,α
3
线性无关。
α
1
-α
2
,α
2
-α
3
是齐次方程AX=0的两个线性无关的解,则n-r(A)≥2,即3-r(A) ≥2,故r(A)≤3-2=1,但A≠O(若A=O,则AX=b无解与题设矛盾),故必有r(A)≥1,所以r(A)=1,仅(C)成立。
转载请注明原文地址:https://kaotiyun.com/show/zUw4777K
0
考研数学一
相关试题推荐
设f(x)可导且f’’(0)=6,且
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
设矩阵A与B相似,且。求可逆矩阵P,使P—1AP=B。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A=有三个线性无关的特征向量,求a及An.
求微分方程xy’=yln的通解.
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
设向量组α1=线性相关,但任意两个向量线性:无关,求参数t.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设有摆线(0≤t≤2π),求:(Ⅰ)曲线绕直线y=2旋转所得到的旋转体体积;(Ⅱ)曲线形心的纵坐标。
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)