首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2017-04-24
47
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=0,∫
0
π
f(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt 0≤x≤π 则F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x) sinxdx =∫
0
π
F(x)sinxdx 所以,存在ξ∈(0,π),使F(ξ) sinξ=0,因若不然,则在(0,π)内或F(x)sinx恒为正,或F(x) sinx恒为负,均与∫
0
π
F(x) sinxdx=0矛盾,但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0. 由以上证得 F(0)=F(ξ)=F(π)=0 (0<ξ<π) 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔中值定理,知至少存在ξ
1
(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0 即 f(ξ
1
) =f(ξ
2
)=0 证2 由∫
0
π
f(x)dx=0知,存在ξ
1
∈(0,π),使f(ξ
1
)=0,因若不然,则在(0,π)内或f(x)恒为正,或f(x)恒为负,均与∫
0
π
f(x)dx=0 矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由∫
0
π
f(x)dx=0推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0.于是再由∫
0
π
f(x)cosxdx=0与∫
0
π
f(x)dx=0及cosx在 [0,π]上的单调性知: 0=f(x) (cosx一cosξ
1
)dx =[*]f(x) (cosx一cosξ
1
)dx+[*]f(x) (cosx一cosξ
1
)dx>0 得出矛盾. 从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f (ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zVt4777K
0
考研数学二
相关试题推荐
设f(u,v)是二元可微函数,=________。
A、连续但不可导B、可导但导数不连续C、导数连续D
令h=(b-a)/n,因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b),所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性,存在a<c1<c2<…
当x>0时,方程kx+1/x2=1有且仅有一个根,求k的取值范围.
求方程的通解。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
求微分方程y’-yln2=2siny(cosx-1)满足x→+∞时,y有界的特解。
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)________。
(2011年试题,三)如图1—3—2,一容器的内侧是由图中曲线y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成.(I)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为1
某湖泊水量为V,每年排人湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排人湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
随机试题
下列霍乱弧菌的致病因素不包括
已知某正弦交流电压u=100sin(2πt+60。)V,其频率为()。
背景某机场经过合法的招投标程序,将航站楼通风管路的安装工程和行李处理系统的建设工程,分别承包给国内某建筑安装公司A和国外某设备公司B。按照合同要求某处应先安装行李传送带,后安装送风管。但因工期紧工程量大,机场方要求A、B方尽量将工期往前赶。在施工过程中,
下列各项中,能够引起现金流量净额发生变动的是()。
下列属于公司董事会职责的有()。
关于银行业务创新说法正确的有()。
若每次打开Word程序编辑文档时,计算机都会把文档传送到另一台FTP服务器,那么可以怀疑Word程序被黑客植入了()。
关于自尊,下列说法中正确的是()
以下叙述正确的是()。
Nowadays,airtravelisvery【C1】______WearenotsurprisedwhenwewatchonTVthatapoliticianhastalkedwithFrenchPresiden
最新回复
(
0
)