首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2017-04-24
32
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=0,∫
0
π
f(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt 0≤x≤π 则F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x) sinxdx =∫
0
π
F(x)sinxdx 所以,存在ξ∈(0,π),使F(ξ) sinξ=0,因若不然,则在(0,π)内或F(x)sinx恒为正,或F(x) sinx恒为负,均与∫
0
π
F(x) sinxdx=0矛盾,但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0. 由以上证得 F(0)=F(ξ)=F(π)=0 (0<ξ<π) 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔中值定理,知至少存在ξ
1
(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0 即 f(ξ
1
) =f(ξ
2
)=0 证2 由∫
0
π
f(x)dx=0知,存在ξ
1
∈(0,π),使f(ξ
1
)=0,因若不然,则在(0,π)内或f(x)恒为正,或f(x)恒为负,均与∫
0
π
f(x)dx=0 矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由∫
0
π
f(x)dx=0推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0.于是再由∫
0
π
f(x)cosxdx=0与∫
0
π
f(x)dx=0及cosx在 [0,π]上的单调性知: 0=f(x) (cosx一cosξ
1
)dx =[*]f(x) (cosx一cosξ
1
)dx+[*]f(x) (cosx一cosξ
1
)dx>0 得出矛盾. 从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f (ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zVt4777K
0
考研数学二
相关试题推荐
验证函数z=sin(x-ay)满足波动方程.
设,x>0,y>0,求:
计算xydδ,其中D是由直线y=1,x=2,y=x所围成的区域。
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)=________。
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
A、连续但不可导B、可导但导数不连续C、导数连续D
设f(x)为二阶可导的奇函数,且x<0时有f"(x)>0,f’(x)<0,则当x>0时有().
令h=(b-a)/n,因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b),所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性,存在a<c1<c2<…
设函数y=y(x)满足△y=△x/(1+x2)+o(△x),且y(0)=4,则y(x)=________·
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
随机试题
_______年在布鲁塞尔召开有37国代表出席的外交会议上,通过了修订《海牙—维斯比规则》的议定书()
招聘计划应包括()。
下列关于“法治”与“法制”区别的表述,错误的是()。
《资治通鉴》是中国第一部编年体通史。()
求∫0x2(x—t)dt.
(7)不属于将入侵检测系统部署在DMZ中的优点。
From:ACAEventsTo:GregUnderwoodSubject:RegistrationfortheACABusinessManagementSeminarDearMr.Underwood,Youhav
Vibrationsinthegroundareapoorlyunderstoodbutprobablywidespreadmeansofcommunicationbetweenanimals.Itseemsun
Hewasfacingchargesonforgeryinacourtoflawbuthehiredagoodlawyerto_____.
ThepennameMarkTwaincamefrom_____
最新回复
(
0
)