首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2017-04-24
33
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=0,∫
0
π
f(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt 0≤x≤π 则F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x) sinxdx =∫
0
π
F(x)sinxdx 所以,存在ξ∈(0,π),使F(ξ) sinξ=0,因若不然,则在(0,π)内或F(x)sinx恒为正,或F(x) sinx恒为负,均与∫
0
π
F(x) sinxdx=0矛盾,但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0. 由以上证得 F(0)=F(ξ)=F(π)=0 (0<ξ<π) 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔中值定理,知至少存在ξ
1
(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0 即 f(ξ
1
) =f(ξ
2
)=0 证2 由∫
0
π
f(x)dx=0知,存在ξ
1
∈(0,π),使f(ξ
1
)=0,因若不然,则在(0,π)内或f(x)恒为正,或f(x)恒为负,均与∫
0
π
f(x)dx=0 矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由∫
0
π
f(x)dx=0推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0.于是再由∫
0
π
f(x)cosxdx=0与∫
0
π
f(x)dx=0及cosx在 [0,π]上的单调性知: 0=f(x) (cosx一cosξ
1
)dx =[*]f(x) (cosx一cosξ
1
)dx+[*]f(x) (cosx一cosξ
1
)dx>0 得出矛盾. 从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f (ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zVt4777K
0
考研数学二
相关试题推荐
设f(x,y)=·ln(x2+y2),求f’x(1,0).
设有三元方程xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程________。
设f(x,y,z)是k次齐次函数,即f(tx,ty,tz)=tkf(x,y,z),λ为某一常数,则结论正确的是________。
曲线y=(x2+1)/(x+1)1/(x-1)的渐近线的条数为().
曲线y=(2x5-4x4+1)/(x4+1)的斜渐近线为________.
求下列微分方程的通解。y’-xy’=a(y2+y’)
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
某湖泊水量为V,每年排人湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排人湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
随机试题
急性颅内压增高时病人早期生命体征改变为
某县政府要求所有机关、事业单位购买某啤酒厂质次价高、没有竞争力的啤酒,并且下达具体购买任务。这种行为属于【】
_______使计算机从一种需要用键盘、鼠标对其进行操作的设备,变成了人处于计算机创造的环境中,通过感官、语言、手势等比较“自然”的方式进行“交互、对话”的系统和环境。
下列属于长期借款筹资特点的是()。
我国国家预算现设立中央、省(自治区、直辖市)、设区的市(自治州)、县(自治县)、乡(民族乡、镇)五级预算。()
导游的态势语言主要包括()。
在我国历史上,以《人若耶溪》为题作诗的人物有()。
WhatistheproblemwithPremier’spresentITsystem?
Nooneworddemonstratedtheshiftincorporations’attentioninthemid-1990sfromprocessestopeoplemorevividlythanthesi
A、Themanislookingforaplacetolivein.B、Themanhasahouseforrent.C、Thewomanisasecretary.D、Thetwospeakersare
最新回复
(
0
)