首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知两个向量组与β1=(-1,2,t)T,β2=(4,1,5)T。 (Ⅰ)t为何值时,与β1,β2等价; (Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
已知两个向量组与β1=(-1,2,t)T,β2=(4,1,5)T。 (Ⅰ)t为何值时,与β1,β2等价; (Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
admin
2020-05-19
51
问题
已知两个向量组
与β
1
=(-1,2,t)
T
,β
2
=(4,1,5)
T
。
(Ⅰ)t为何值时,
与β
1
,β
2
等价;
(Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
选项
答案
(Ⅰ)对向量组[*]和β
1
,β
2
所构成的矩阵[*]进行初等行变换化为阶梯形矩阵, [*] 因为[*]与β
1
,β
2
等价,所以 [*]=r(β
1
,β
2
),所以t=1。 (Ⅱ)对矩阵[*]进行初等行变换化为行最简形, [*] 所以 [*] 对矩阵[*]进行初等行变换化为行最简形, [*] 所以 [*]
解析
第(Ⅰ)问求未知数的值通过两向量组等价从而向量组的秩相等得出。
第(Ⅱ)问考查向量组的线性表示式,对其组成的矩阵进行行变换,化为行最简形得出表达式。
转载请注明原文地址:https://kaotiyun.com/show/zVv4777K
0
考研数学一
相关试题推荐
设(2E~C-1)A=C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设随机变量X和Y均服从,且D(X+Y)=1,则X与Y的相关系数ρ=_____。
设yn=,求极限yn.
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=kA*.
设函数y=y(x)是微分方程y’’-3y’+2y=0满足条件y(0)=1,y’(0)=2的特解,则直线x=0,y=e2与曲线y=y(x)所围成的图形绕Y轴旋转所得旋转体的体积为________.
设∑是平面在第一卦限部分的下侧,则I=Pdydz+Qdzdx+Rdxdy化成对面积的曲面积分为I=______.
设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B—C为
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
随机试题
关系模型的特点不包括()
脊髓位于________内,上端在枕骨大孔处连接脑的________;下端成年人约平第________腰椎体下缘。
幼儿对住院反应的主要护理措施,错误的是()
A.凹逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤和解少阳,内泻热结的代表方剂是
肉瘤的特点是
A.转移癌B.恶性癌C.交界癌D.癌前病变E.早期癌黑色素瘤属于
效力未定的民事行为的类型包括( )。
下列关于广告主广告部门的职能,说法错误的是()。
2014年7月1日开始实施的《事业单位人事管理条例》指出,对事业单位人员的处分包括:
Thenatureoflightisnotwhollyknown,butitisgenerallybelievedtobematter,asinits(1)______,itobeysthelaws(2)____
最新回复
(
0
)