首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证:这三条直线交于一点的充分必要条件为a+b+c=0。
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证:这三条直线交于一点的充分必要条件为a+b+c=0。
admin
2019-03-23
54
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0,
试证:这三条直线交于一点的充分必要条件为a+b+c=0。
选项
答案
必要性。设三直线交于一点(x
0
,y
0
),则[*]为Ax=0的非零解,其中A=[*],于是|A|=0。而 |A|=[*] = —6(a+b+c)(a
2
+b
2
+c
2
—ab—ac—bc) = —3(a+b+c)[(a—b)
2
+(b—c)
2
+(c—a)
2
], 但根据题设可知(a—b)
2
+(b—c)
2
+(c—a)
2
≠0,故a+b+c=0。 充分性。考虑线性方程组 [*] 将该方程组的三个方程相加,并由a+b+c=0可知,其等价于方程组 [*] 因为 [*]=2(ac—b
2
)= —2[a(a+b)+b
2
] = —[a+b
2
+(a+b)
2
]≠0, 所以方程组有唯一解,即三直线l
1
,l
2
,l
3
交于一点。
解析
转载请注明原文地址:https://kaotiyun.com/show/zXV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
已知α=(1,1,-1)T是A=的特征向量,求a,b和α的特征值λ.
已知方程组总有解,则λ应满足_________.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
随机试题
A.红霉素B.罗红霉素C.克拉霉素D.克林霉素E.四环素不耐酸,口服剂型多制成酯化物的是
下列表现属于瘀血发热的有
A、胶体溶液B、微乳C、真溶液D、混悬液E、乳浊液粒径为0.1~100μm()
下列关于噻嗪类利尿药的降压机制,说法不正确的是
下列对建设工程归档文件的要求中,属于质量要求的有()。
资料一:甲有限责任公司是一家成立时间较长,大型的建筑工程公司,有在海外承揽大型工程的丰富经验。目前,该公司打算开拓南美市场,但经过分析后,拟进入的A国政局不稳,并且国内经济恶化,通货膨胀率十分严重,而且政变后新上台的军政府不承认前任政府签署的所有相关协议,
计算机软件一般包括系统软件和()。
前些年翻看先生的这本书时,尽管自己对民国话题有着欲说还休的浓厚兴趣,对这本话语剪辑独出心裁的编排方式下潜藏的_________常常默契会心,但读完仍是感到_________。依次填入画横线部分最恰当的一项是()。
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是[].
《保险法》规定,保险业和银行业、证券业实行混业经营。()
最新回复
(
0
)