证明:

admin2022-03-20  5

问题 证明:

选项

答案(1)由行列式定义知, [*] 若[*]≠0,由题设知j3,j4,j5只能等于4或5,从而可得j3,j4,j5中至少有两个相等,这与“j1j2j3j4j5是1,2,3,4,5的一个全排列”矛盾,故[*]=0,于是D=0. (2)D=[*] 由题设,要使[*]≠0,必须j1,j2取1或2,而j1j2j3j4是1,2,3,4的一个全排列,故j3,j4取3或4,于是 D=(一1)τ(1234)a11a22a33a44+(-1)τ(1243)a11a22a34a43 +(一1)τ(2134)a12a21a33a44+(一1)τ(2143)a12a21a34a43 =a11a22a33a44一a11a22a34a43-a12a21a33a44+a12a21a34a43. 而[*]=(a11a22-a21a12)(a33a44一a43a34) =a11a22a33a44一a11a22a34a43一a12a21a33a44+a12a21a34a43, 所以等式成立.

解析
转载请注明原文地址:https://kaotiyun.com/show/zcl4777K
0

最新回复(0)