首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(a,3,1)T,α2=(2,b,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
设向量组α1=(a,3,1)T,α2=(2,b,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
admin
2020-04-30
44
问题
设向量组α
1
=(a,3,1)
T
,α
2
=(2,b,3)
T
,α
3
=(1,2,1)
T
,α
4
=(2,3,1)
T
的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
选项
答案
令A=(α
1
,α
2
,α
3
,α
4
),对矩阵作初等行变换,得 [*] 由于r(α
1
,α
2
,α
3
,α
4
)=2,即r(A)=2,由上面行阶梯形结果可知第1,2两行必是非零行,要使r(A)=2,第3行应 为零,即2-a=0,6a+b-ab-7=0,解得a=2,b=5,此时向量组的秩为2. 取α
1
,α
3
为向量组的极大线性无关组,为把α
2
,α
4
用该极大线性无关组线性表示,进一步将A化为 [*] 于是得α
2
=-α
1
+4α
3
,α
4
=α
1
.
解析
本题考查向量组的极大线性无关组和秩的概念及一个向量用一组向量线性表示.
转载请注明原文地址:https://kaotiyun.com/show/82v4777K
0
考研数学一
相关试题推荐
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设A是n阶矩阵,α是n维列向量,若秩=秩(A),则线性方程组
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为().
设A是3阶矩阵,向量α1=(1,2,0)T,α2=(1,0,1)T,β=(-1,2,-2)T.已知λ=2是矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量,则Aβ=_______.
假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,则随机变量X+Y的分布函数()
设f(x)在点x0处不可导,g(x)在点x0处可导,则下列4个函数中在点x0处肯定不可导的是()
设y=f(x)是微分方程y’’一2y’+4y=0的一个解,若f(x0)>0,且f’(x0)=0,则函数f(x)在点x0()
设α为3维列向量,αT是α的转置,若ααT=,则αTα=_________.
已知a,b,c是单位向量,且满足a+b+c=0,则a·b+b·c+c·a=___________.
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX12+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
随机试题
试述主要矛盾和次要矛盾关系的原理及其现实意义。
正常妊娠的辅助诊断下列哪些项是正确的:
有头疽的病因病机哪项不正确()
张某2009年收入应纳个人所得税合计()元。
在工作过程中,社会工作者对服务对象说:“您刚才说的意思是……是吗?”或者“听到您刚才的话,我的理解是……对吗?”在这两句话中,社会工作者运用了()。
我尽力理解他在会上说的每一句话。
根据下列资料,回答问题。公路客运方面:10月5日共发送客车3546车次,发送旅客5.45万人次;抵达客车1472车次,抵达旅客1.88万人次。民航方面:10月5日共发送航班236班次,发送旅客3.25万人次;抵达航班233班次,抵达
由于单位要装修,需要所有职员在一起轮流办公,你负责安排,你会怎么办?
用来估计速度测验的信度的方法是
按照剩余股利政策,假定某公司的最佳资本结构是权益资金60%,债务资金40%,明年计划投资1000万元,该公司本年的净利润是900万,法定盈余公积的计提比例是10%,那么本年应该留存的利润是()万元。
最新回复
(
0
)