首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
admin
2018-01-23
54
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.
求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. [*]得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为[*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/zfX4777K
0
考研数学三
相关试题推荐
设3阶方阵A、B满足A2B—A—B=E.其中E为3阶单位矩阵,若,则∣B∣=_______
试证明函数在区间(0,+∞)内单调增加.
设商品的需求函数Q=100一5p,其中Q、P分别表示需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_______.
(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);(1I)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
设函数f(x)在[0,+∞)上可导,f(0)=0,且,证明:对(I)中的a,存在ξ∈(0,a),使得
设矩阵矩阵A满足关系式A(E一C-1B)TCT=E,化简此关系式并求矩阵A.
设A,B,C均为竹阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B一C为【】
已知抛物线y=px2+qx(其中P<0,q>0)在第一象限内与直线x+y=5相切,且抛物线与x轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
设A=(a1,a2,a3,a4)为四阶方阵,且a1,a2,a3,a4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明A,B有公共特征值λ=-1;
随机试题
常用的退火方法有完全退火、球化退火和去应力退火等。()
在测量顾客忠诚情况时,最直接和有效的手段是【】
Itoldhimseveraltimes,buthekeptonreadingwithouthearingwhatIsaid.
明显的阻塞性黄疸,B超检查示肝内胆管扩张、胆总管直径2cm时,比较理想的进一步检查是
A.巯嘌呤B.氟尿嘧啶C.尿酸D.痛风症E.核糖核苷酸还原酶嘌呤核苷酸代谢的终产物为
地下室底板下翻梁的砖模,应套用定额为()。
根据涉外投资法律制度的规定,下列关于外商投资保护的表述中,正确的有()。
以下属于母子公司合并现金流量表应抵销的项目有()。
材料:今日所讲,专为现在有职业及现在正做职业上预备的人——学生——说法,告诉他们对于自己现有的职业应采取何种态度。 敬业。对于“敬”字唯有南宋教育家朱熹解得最好。他说:“主一无适便是敬。”用现在的话讲,凡做一件事,便忠于一件事,将全副精力集
下面关于S3C2410电源管理的叙述中,错误的是()。
最新回复
(
0
)