首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)(Ⅰ)证明方程χn+χn-1…+χ=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为χn,证明χn存在,并求此极限.
(2012年)(Ⅰ)证明方程χn+χn-1…+χ=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为χn,证明χn存在,并求此极限.
admin
2021-01-19
70
问题
(2012年)(Ⅰ)证明方程χ
n
+χ
n-1
…+χ=1(n为大于1的整数)在区间(
,1)内有且仅有一个实根;
(Ⅱ)记(Ⅰ)中的实根为χ
n
,证明
χ
n
存在,并求此极限.
选项
答案
(Ⅰ)令f(χ)=χ
n
+χ
n-1
+…+χ-1(n>1),则f(χ)在[[*],1]上连续,且 [*],f(1)=n-1>0, 由闭区间上连续函数的介值定理知,方程f(χ)=0在([*],1)内至少有一个实根. 当χ∈([*],1)时, f′(χ)=nχ
n-1
+(n-1)χ
n-2
+…+2χ+1>1>0, 故f(χ)在([*],1)内单调增加. 综上所述,方程f(χ)=0在([*],1)内有且仅有一个实根. (Ⅱ)由χ
n
∈([*],1)知数列{χ
n
}有界,又 χ
n
n
+χ
n
n-1
+…+χ
n
=1 χ
n
n
+χ
n
n-1
+χ
n+1
n-1
+…+χ
n+1
=1 因为χ>0,所以 χ
n
n
+χ
n
n-1
+…+χ
n
>χ
n+1
n
+χ
n+1
n-1
+…+χ
n+1
于是有 χ
n
>χ
n+1
,n=1,2…, 即{χ
n
}单调减少. 综上所述,数列{χ
n
}单调有界,故{χ
n
}收敛. 记a=[*]χ
n
.由于 [*] 令χ→∞并注意到[*]<χ
n
<χ
1
<1,则有 [*] 解得a=[*],即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zk84777K
0
考研数学二
相关试题推荐
计算行列式
求
设f(χ)二阶连续可导,f〞(0)=4,=0,求
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组Aχ=0的解,α2=(m,1,1-m)T是方程组(A+E)χ=0的解,则m=________.
设u=u(x,y)由方程组确定,其中φ(v),ψ(v)有连续的二阶导数且yφ"(v)+ψ"(v)≠0,求证:
设η为非零向量,A=,η为方程组AX=0的解,则a=_______,方程组的通解为_______.
设f(x1,x2)=,则二次型的对应矩阵是_________。
(2003年试题,九)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m,根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以,mn2/min的速率均匀扩大(假设注入
[2011年]设A为三阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
(1993年)若f(χ)=-f(-χ),在(0,+∞)内,f′(χ)>0,f〞(χ)>0,则f(χ)在(-∞,0)内
随机试题
TheoriesofHistoryI.Howmuchweknowabouthistory?A.【T1】_____existforonlyafractionofman’stimeB.Theaccu
蔬菜类原料中________含量较少。
某妇女,58岁,绝经,近期有不规则阴道流血,妇检子宫较正常略小,右附件可触及拳大肿块,诊刮病理报告子宫内膜呈囊腺型增生过长。
严重肝功能障碍患者血浆总胆固醇特别是血浆胆固醇酯水平降低,其可能的原因是
肝炎病人血清酶测定时,正确的是
如果材料价格的下降表明产成品的可变现净值低于产成品的生产成本,则该材料仍然应当按照成本计量。()
下列说法不正确的有()。
属于夏季的节气有()。
“应当把成人看作成人,把孩子看作孩子。”这体现了()的学生观。
Whenwewantto(56)otherpeoplewhatwethink,wecandoitnotonlywiththehelpofwords,butalsoinmany(57)ways.Fore
最新回复
(
0
)