首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-06-28
62
问题
设f(x)在(a,b)内可导,证明:
,x
0
∈(a,b)且x≠x
0
时,f’(a)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
必要性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
[*] f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加 [*] [f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0 [*]f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 充分性:设f’(x)在(a,b)单调减少.对于[*],x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/qZV4777K
0
考研数学二
相关试题推荐
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
设方程组与方程(2)x1+2x2+x3=a一1有公共解,求a的值及所有公共解。
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
已知的一个特征向量。问A能不能相似对角化?并说明理由。
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则,其中l1≠0。
设函数f(u,v)具有二阶连续偏导数,y=f(ex,cosx),求dy/dx|x=0,d2y/dx2|x=0
求证:当x>0时,有不等式arctanx+.
计算ln(1+x2+y2)dxdy,;其中D:x2+y2≤1.
随机试题
奥运会的格言是“更快、更高、更强”。请结合这一格言,自拟题目。要求:A.自定立意,可写成记叙文、议论文。B.不少于800字。C.字迹工整,卷面整洁。
小儿腹泻脱水,在脱水纠正后出现抽搐,最常见的原因是
印制规范包括()要求。
根据《会计人员继续教育暂行规定》,具有初级会计专业技术资格的会计人员每年接受继续教育的培训时间最少应为()。
下列各项中,属于企业所有者权益组成部分的有()。
Whathealthproblemsdomanyelderlyhave?MaggieKuhntravelsacrosstheUnitedStatesinorderto______elders.
A、 B、 C、 D、 D
A、Yellow.B、Green.C、White.A本题询问丽莉的衣服是什么颜色的。女士说:TheblueoneisLucy’s,andtheyellowoneisLily’s.可知答案为[A]Yellow。
MESOLITHICCOMPLEXITYINSCANDINAVIA(1)TheEuropeanMesolithic(roughlytheperiodfrom8000B.C.to2700B.C.)testifiest
A、Hefounditmoreprofitable.B、Hewantedtobehisownboss.C、Hedidn’twanttostartfromscratch.D、Hedidn’twanttobein
最新回复
(
0
)