首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,βt都是n维列向量组,记矩阵 A=(α1,α2,…,αs),B=(β1,β2,…,βt) 证明:存在矩阵C,使得AC =B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α1,α2,…,αs)
①设α1,α2,…,αs和β1,β2,…,βt都是n维列向量组,记矩阵 A=(α1,α2,…,αs),B=(β1,β2,…,βt) 证明:存在矩阵C,使得AC =B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α1,α2,…,αs)
admin
2017-11-22
51
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
都是n维列向量组,记矩阵
A=(α
1
,α
2
,…,α
s
),B=(β
1
,β
2
,…,β
t
)
证明:存在矩阵C,使得AC =B的充分必要条件是r(α
1
,α
2
,…,α
s
;β
1
,β
2
,…,β
t
)=r(α
1
,α
2
,…,α
s
).
已知矩阵方程AX=B有解,求a,b.并求它的一个解.
选项
答案
①根据向量组秩的性质, r(α
1
,α
2
,…,α
s
;β
1
,β
2
,…,β
t
)=r(α
1
,α
2
,…,α
s
) [*]β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示. 如果矩阵C使得AC =B,记C的(i,j)位元素为c
ij
,则 β
j
= c
1j
α
1
+c
2j
α
2
+…+c
sj
α
s
,j=1,2,…,s. 从而β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
线性表示. 反之,如果β
1
,β
2
,…,β
t
可以用α
1
,α
2
,…,α
s
,线性表示,设 β
j
=c
1j
α
1
+c
2j
α
2
+…+c
sj
α
s
,j=1,2,…,s. 记C的(i,j)位元素为c
ij
的s×t的矩阵,则由矩阵乘法的定义,AC=B [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/znX4777K
0
考研数学三
相关试题推荐
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设A是n阶方阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
已知矩阵相似.求一个满足P-1AP=B的可逆矩阵P.
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有=________.
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.
设二维随机变量(X,Y)的概率密度为则随机变量U=X+2Y,V=-X的协方差Cov(U,V)为________.
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
已知f(x),g(x)连续可导,且f′(x)=g(x),g′(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g′(x)-xg(x)=cosx+φ(x),求不定积分∫xf″(x)dx.
随机试题
实验期内动物平均每摄入1克蛋白质所增加的体重克数是生物价。()
土基干湿类型划分的指标是路基土的相对含水量。( )
不动产是指不可移动的有形财产,如土地及房屋、林木等地上附着物。()
种植业是利用植物的生活机能,通过人工培育以取得()的社会生产部门。
近日,火星车在加勒陨坑拍摄的图像发现,火星陨坑内的远古土壤存在着类似地球土壤裂纹剖面的土壤样本,通常这样的土壤存在于南极干燥谷和智利阿塔卡马沙漠,这暗示着远古时期火星可能存在生命。以下哪项如果为真,最能支持上述结论?()
智者
可以作为窗体记录源的是()。
ThePragueSchoolisbestknownforitscontributiontothedistinctionbetweenphoneticsand
过分多疑的心理,因素很是复杂,决非单纯神经过敏可以解释。(beexplainedby)
A、Thestewardess.B、Myfriend.C、Apassenger.D、Thepilot.A[听力原文]Whogavetheauthorapaperbag?信息明示题。文章提到,whenIfeltairsi
最新回复
(
0
)