首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O. (1)求正交矩阵Q,使得在正交变换X=QY,下二次型化为标准形. (2)求矩阵A.
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O. (1)求正交矩阵Q,使得在正交变换X=QY,下二次型化为标准形. (2)求矩阵A.
admin
2020-03-16
165
问题
设二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX,tr(A)=1,又B=
且AB=O.
(1)求正交矩阵Q,使得在正交变换X=QY,下二次型化为标准形.
(2)求矩阵A.
选项
答案
(1)由AB=O得[*]=0, 即[*]为λ=0的两个线性无关的特征向量,从而λ=0为至少二重特征值, 又由tr(A)=1得λ
3
=1, 即λ
1
=λ
2
=0,λ
3
=1. 令λ
3
=1对应的特征向量为α
3
=[*] 因为A
T
=A,所以[*] 解得λ
3
=1对应的线性无关的特征向量为 [*] 所求的正交矩阵为Q=[*] 且X
T
AX[*]y
3
2
. (2)由[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zo84777K
0
考研数学二
相关试题推荐
设求A和A-1+E的特征值.
设D={(x,y)|x2+y2≤,x≥0,y≥0,[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。[img][/img]
设f(x)在[a,b]上连续,证明:∫abf(x)dx∫xbf(y)dy=[∫abf(x)dx]2.
设函数f(x)在[0,π]上连续,且∫0πf(x)sindx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是A的伴随矩阵.试求a、b和λ的值.
设α=(a1,a2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=∧为对角矩阵.
设实方阵A=(aij)4×4满足:(1)aij=Aij(i,j=1,2,3,4,其中Aij为aij的代数余子式);(2)a11≠0,求|A|.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.求方程组AX=b的通解.
求极限
令f(χ)=χ-[χ],求极限
随机试题
宋代著名书法家,有“宋四家”之称的是()。
Subwaysareundergroundtrains,whichusuallyoperate24hoursaday.Theyarefoundinlargercitiesandusuallyrunbetweenth
A.清胃泻热,凉血止衄B.清胃泻火,化瘀止血C.清胃泻火,凉血止血D.清泻胃热,凉血化瘀(2008年第105,106题)鼻衄属于胃热炽盛证,其治法是()
抑制胃酸分泌作用最强的是
企业法人不能清偿到期债务,并且资产不足以清偿全部债务或者明显缺乏清偿能力的,根据《企业破产法》的规定,该企业法人可以选择以下哪些程序处理其与债权人之间的债权债务关系?
以下不属于安全评价准备阶段的工作是()。
下列不属于建设工程总概算中工程建设其他费用的是()。
按CIF/CIP贸易术语成交,尽管价格中包括至指定目的港/目的地的运费和保险费,但卖方不承担货物必然到达目的港/目的地的责任。()
1985年,法国前总统密特朗倡议制定“尤里卡计划”,呼吁西欧国家在光电子学等尖端领域展开合作,建立“科技欧洲”。密特朗提出该计划的目的是()。
【B1】【B6】
最新回复
(
0
)