首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足 且ξ1=(1,2,1)T, ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系. (Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形; (Ⅱ)求出该二次型.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足 且ξ1=(1,2,1)T, ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系. (Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形; (Ⅱ)求出该二次型.
admin
2016-01-22
51
问题
已知实二次型f(x
1
,x
2
,x
3
)=x
T
Ax的矩阵A满足
且ξ
1
=(1,2,1)
T
,
ξ
2
=(1,一1,1)
T
是齐次线性方程组Ax=0的一个基础解系.
(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;
(Ⅱ)求出该二次型.
选项
答案
(Ⅰ)由题意知A的特征值为λ
1
=λ
2
=0,λ
3
=2.设ξ
3
为A的属于特征值λ
3
=2的特征向量,则ξ
3
分别ξ
1
,ξ
2
正交,记ξ
3
=(t
1
,t
2
,t
3
)
T
, 有[*] 故可取t
1
=1,t
2
解析
转载请注明原文地址:https://kaotiyun.com/show/uDw4777K
0
考研数学一
相关试题推荐
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
就a,b的不同取值,讨论方程组解的情况.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为________.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
设α1,α2,α3,…,αn是n个n维列向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是
设A=(α1,α2,α3,…,αm),其中α1,α2,α3,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,k3,…,km,皆有k1α1+k2α2+k3α3+...+kmαm≠0,则()。
函数f(x)在x=1处可导的充分必要条件是()。
随机试题
政治风险、自然风险主要是()
下列蛋白质中三酰甘油含量最多的是
宫颈黏液检查临床应用中,错误的是
术后为了预防全麻患者发生呼吸困难,最重要的措施是()
下列关于直埋管道设计及施工要点说法错误的是()。
基金资产保管的主要内容包括()。
我国关于民族问题的基本政策下列描述正确的是()
教学过程中的测验属于诊断性评价。
为贯彻新课程教育理念,教师应做到()。
在VisualFoxPro中,关于自由表叙述正确的是()。
最新回复
(
0
)