首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足 且ξ1=(1,2,1)T, ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系. (Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形; (Ⅱ)求出该二次型.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足 且ξ1=(1,2,1)T, ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系. (Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形; (Ⅱ)求出该二次型.
admin
2016-01-22
61
问题
已知实二次型f(x
1
,x
2
,x
3
)=x
T
Ax的矩阵A满足
且ξ
1
=(1,2,1)
T
,
ξ
2
=(1,一1,1)
T
是齐次线性方程组Ax=0的一个基础解系.
(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;
(Ⅱ)求出该二次型.
选项
答案
(Ⅰ)由题意知A的特征值为λ
1
=λ
2
=0,λ
3
=2.设ξ
3
为A的属于特征值λ
3
=2的特征向量,则ξ
3
分别ξ
1
,ξ
2
正交,记ξ
3
=(t
1
,t
2
,t
3
)
T
, 有[*] 故可取t
1
=1,t
2
解析
转载请注明原文地址:https://kaotiyun.com/show/uDw4777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=0.(1)求正交矩阵Q,使得在正交变换x-Qy下二次型化为标准形;(2)求矩阵A.
下列说法正确的是().
n阶实对称矩阵A正定的充分必要条件是().
设向量组α1=线性相关,但任意两个向量线性:无关,求参数t.
n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为________.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设[*]12,其中D:x2+y2≤a2,则a的值为()。
设矩阵(Ⅰ)已知A的一个特征值为3,试求y;(Ⅱ)求矩阵P,使(AP)T(AP)为对角矩阵.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
随机试题
Therewasatimewhen,ifaladygotintoacrowdedbusortrain,agentlemanwouldimmediatelystandupandofferherhisseat.
设区域D:x2+y2≤a2(a>0),y≥0,则化为极坐标系下的二重积分的表达式为_________.
关于放线菌叙述,下列何者正确
因色素沉着而呈淡黄色的改变见于牙本质龋的
项目施工中,安全检查的重点是()和违章作业。
甲公司适用的所得税税率为25%,且预计在未来期间保持不变,2013年度所得税汇算清缴于2014年3月20日完成;2013年度财务报告批准报出日为2014年4月5日,甲公司有关资料如下:(1)2013年10月12日,甲公司与乙公司签订了一项销售合同
时间都去哪了?我们通常感到时间不断地流逝,然而有的科学家认为,时间和空间一样,是不会流逝的。其实,不管人们有何感觉,意识的内容都是()。
Thecompany’snewheadquartersofficebasedatNewYorkisconsiderablylarger______theoldone.
Whatisthepurposeofthecall?
A、BecausemanyarchitectsstudiedwithWright.B、BecauseWrightstartedthepracticeof"land-scraping".C、BecauseWrightusede
最新回复
(
0
)