首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
admin
2018-11-20
61
问题
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)
2
,EX=2(1—θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
选项
答案
(I)设X的概率分布为P{X=0}=p
0
,P{X=1}=p
1
,P{X=2}=p
2
,由题设知p
2
=(1—θ)
2
,又EX=2(1—θ)=0×p
0
+1×p
1
+2p
2
=p
1
+2p
2
=p
1
+2(1—θ)
2
,解得p
1
=2(1—θ)一2(1—θ)
2
=2θ(1—θ),而p
0
+p
1
+p
2
=1,所以p
0
=1—p
1
—p
2
=θ
2
,X的概率分布为 [*] (Ⅱ)应用定义求矩估计值、最大似然估计值.令μ=EX=2(1—θ),解得[*]于是θ的矩估计量[*]将样本值代入得θ的矩估计值为[*]即θ的矩估计值[*] 又样本值的似然函数 L(x
1
,…,x
10
;θ)=[*]P{X=x
i
,θ}=[2θ(1一θ]
5
(1一θ)
6
θ
4
=2
5
θ
9
(1一θ)
11
,lnL=5ln2+9lnθ+11ln(1—θ), 令[*]解得θ最大似然估计值[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zrW4777K
0
考研数学三
相关试题推荐
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:已知前两次没有取到次品,第三次取得次品;
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:第三次取得次品;
设离散型随机变量X的分布函数为则Y=X2+1的分布函数为________.
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则().
设(x1,x1,…,xn)和(x1,x1,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得是θ的无偏估计量,且在所有这样的线性估计中方差最小.
设总体X~N(0,σ2),X1,X2,…,Xn为来自总体X的简单随机样本,则σ2的无偏估计量为().
设随机变量X与Y都服从0一1分布,且X,Y相互独立,P(X=0,Y=0)=1/6,P(X=1,Y=0)=1/12,P(X=0,Y=1)=a,P(X=1,Y=1)=b,则().
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望。
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
设a为常数,讨论方程ex=ax2的实根个数。
随机试题
“少说漂亮话,多做些日常平凡的事情”,列宁的这句话体现了领导作风的【】
下列哪种情况会引起血清补体水平过度降低
某女,28岁。因发热原因不明入院,经实验室检查诊断为草绿色链球菌引起的细菌性心内膜炎。应选择的治疗方案是
与气的生成关系最密切的是
某县人民法院开庭审理陈某抢劫王某财物一案,关于王某的诉讼权利,下列说法正确的是()。
根据城市景观要求,沿街建筑物通常需适当退后建设,所依据的规划控制线是()。
划分施工段是下面哪项的基础。()
支票的绝对记载事项包括()。
大学精神的内涵有哪些方面?
A、Strange.B、Dangerous.C、Harmless.D、Unforgettable.A在对话中,女士说当时她手里拿着提包,里面有手机和钱包,但那个人只抢了她左脚的鞋子,因此她觉得这件事很奇怪(Bizarre)。由此可见,A项Stran
最新回复
(
0
)