首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明: 秩(A)≤2;
[2008年] 设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明: 秩(A)≤2;
admin
2019-04-28
80
问题
[2008年] 设α,β为三维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置.证明:
秩(A)≤2;
选项
答案
解一 直接利用命题2.2.3.2(5)的结论,有秩(αα
T
)≤1,秩(ββ
T
)≤1.再利用命题2.2.3.1(3)得到秩(A)=秩(αα
T
+ββ
T
)≤秩(αα
T
)+秩(ββ
T
)≤2. 解二 设α,β为三维列向量,且α=[a
1
,a
2
,a
3
]
T
,β=[b
1
,b
2
,b
3
]
T
,则 [*] 故秩(αβ
T
)≤1.因而有秩(αα
T
)≤1,秩(ββ
T
)≤1.于是 秩(A)=秩(αα
T
+ββ
T
)≤秩(αα
T
)+秩(ββ
T
)≤1+1=2. 注:命题2.2.3.2 设A为m×n矩阵.(5)若A=αβ,其中α为m维行向量,β为n维列向量,则秩(A)=秩(αβ
T
)≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/77P4777K
0
考研数学三
相关试题推荐
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
计算行列式.
设f(x)=∫-1x(1一|t|)dt(x>-1),求曲线y=f(x)与x轴所围成的平面区域的面积.
设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设A=有三个线性无关的特征向量,求a及An.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
(2016年)求幂级数的收敛域及和函数。
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)