首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0为 (I)求方程组(*)的基础解系和通解; (Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设齐次线性方程组Ax=0为 (I)求方程组(*)的基础解系和通解; (Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
admin
2018-12-21
77
问题
设齐次线性方程组Ax=0为
(I)求方程组(*)的基础解系和通解;
(Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
选项
答案
(I)[*] 故方程组(*)的基础解系为(-3,-5,1,0)
T
,通解为k(-3,-5,1,0)
T
,k是任意常数. (Ⅱ)法一:方程组(*),(**)是同解方程组[*]方程组(*)的通解满足方程组(**)的第4个方程.将(*)的通解代入,得2(-3k)﹢a(-5k)-4k﹢0=0,即-5ak=10k.又k是任意常数,得a=-2.故当a=-2,b为任意值时,方程组(*),(**)同解. 法二 方程组(*),(**)是同解方程组,方程组(**)中新添的第4个方程应可由方程组(*)的3个方程线性表出,表达成列向量形式为 [*] 故a=-2,b为任意值时,方程组(**)中第4个方程可由方程组(*)的3个方程线性表出,从而方程组(*),(**)同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/W8j4777K
0
考研数学二
相关试题推荐
(2012年)证明:χln(-1<χ<1).
(2007年)求微分方程y〞(χ+y′2)=y′满足初始条件y(1)=y′(1)=1的特解.
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
(1997年)设在区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫ab(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则
(1997年)设函数f(χ)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足χf′(χ)=f(χ)+χ2(a为常数),又曲线y=f(χ)与χ=1,y=0所围的图形S的面积值为2.求函数f(χ).并问a为何值时,图形S绕χ轴旋转一周所得旋转体的体
(1991年)求微分方程χy′+y=χeχ满足y(1)=1的特解.
(1992年)求曲线y=的一条切线l,使该曲线与切线l及直线χ=0,χ=2所围成平面图形面积最小.
设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+0(x2),并求常数A,B.
由曲线y=lnx及直线x+y=e+1,y=0所围成的平面图形的面积可用二重积分表示为____________,其值等于____________.
随机试题
Forsometimepastithasbeenwidelyacceptedthatbabiesandothercreatureslearntodothingsbecausecertainactsleadto"
紫外线损伤主要造成
口服避孕药不仅起避孕作用,还有其他益处
依据人的生命质量进行判断,主张从人类整体利益出发,对人类的生命个体实施有效道德控制的一种现代生命观是
马钱子的外形和剖开后子叶叶脉的数目是
当某设备工程的投资偏差大于0时,表明()。
购入固定资产时,发生的增值税进项税应计入“应交税金——应交增值税(进项)”账户,不计入固定资产的成本。()
在我国国债的偿债资金来源中,既具有理论上的合理性,也具有实践上的必然性的是()。
下列现象中,其本质与其他三个现象的本质不同的现象是()。
已知则秩r(AB+2A)=________。
最新回复
(
0
)