首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机事件A与B互不相容,且0<P(A)<1,0<P(B)<1,令( ). X与Y的相关系数为ρ,则( ).
设随机事件A与B互不相容,且0<P(A)<1,0<P(B)<1,令( ). X与Y的相关系数为ρ,则( ).
admin
2017-06-12
51
问题
设随机事件A与B互不相容,且0<P(A)<1,0<P(B)<1,令( ).
X与Y的相关系数为ρ,则( ).
选项
A、ρ=0
B、ρ=1
C、ρ<0
D、ρ>0
答案
C
解析
A与B互不相容,即
于是
P(X=1,Y=)=P(AB)=0,
P(X=0,Y=)=
-P(B),
P(X=1,Y=0)=
=P(A),
P(X=0,Y=0)=
=1-P(A)-P(B).
因此 Cov(X,Y)=E(XY)-E(X)E(Y)=-P(A)P(B),
D(X)=P(A)(1-P(A)),
D(Y)=P(B)(1-P(B)).
所以
故选C.
转载请注明原文地址:https://kaotiyun.com/show/04u4777K
0
考研数学一
相关试题推荐
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=__________.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)如果用作为θ的估计量,讨论它是否具有无偏性.
随机试题
简述日本明治维新的主要内容。(东北师范大学2000年世界近代史真题;南京大学2001年加试世界近现代史真题)
feed录音中表示农场里的庄稼和牲畜等农产品(produce)是供应给伦敦里的居民食用。录音原文中的helpedto是题目wasusedto的同义表述,故空格处填入feed。
下列哪项是下肢静脉血栓最主要的临床表现
施工成本可以按成本构成分解为人工费、材料费和()等。
凯恩斯主义的货币需求函数中,影响货币需求的变量包括()。
张某触犯了法定最高获刑为5年有期徒刑的罪名,则追诉时效为()。
设y=y(x)是南方程y3+xy+x2一2x+1=0确定的满足.y(1)=0的可微函数,则=___________.
通常所说的计算机系统是由()组成。
Tosucceedinascientificresearchproject,____.
Intheearlierdaysofcomputerhistory,therewasaquitewidespreadconcernthatcomputerswouldtakeovertheworldfromman
最新回复
(
0
)