首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
admin
2016-04-11
74
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对于正整数m,存在常数t,使A
m
=t
m—1
A,并求出t;
(2)求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m—1
α
T
=(α
T
α)
m—1
(αα
T
)=([*])
m—1
A=t
m—1
A,其中t=[*].(2)A≠O,A=A,1≤r(A):r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩,故矩阵A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向量可取为(设a
1
≠0):ξ
1
= [*]的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有PAP=diag(0,0,…,0,[*]对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0Aw4777K
0
考研数学一
相关试题推荐
设f’(x)在[0,1]上连续,且f(1)-f(0)=1,证明:∫01f’2(x)dx≥1.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
设f(x)是周期为1的周期函数,在[0,1]上可导,且f(1)=0,记证明:存在一点ξ∈(0,1),使得f’(ξ)=0;
设相似于对角矩阵,则a=________。
设f(x)在[0,+∞)上有二阶连续导数,且f"(x)>0,y=g(x)是曲线y=f(x)在(0,+∞)内任意点x0处的切线方程,记F(x)=f(x)-g(x),则()
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k<n.(Ⅰ)求二次型xTAx的规范形;(Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求行列
设线性方程组的系数矩阵为A,三阶矩阵B≠0,且AB=0,试求λ值.
设f(x,y)的某领域内有定义,且f(0,0)=0,=1,则
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
简述简单蒸气压缩制冷循环的基本构成。
___________是建立组织机构的首要环节或基本途径。
现代政党
简述计算机的组成部件。
镇静催眠药按化学结构可分为
下列因素中,影响企业生产能力的有()。
下列被誉为“国酒”“外交酒”的是()。
国共两党与各革命阶级第一次合作的政治基础是________。
第二代计算机所使用的主要逻辑器件为()。
•Readthearticlebelowaboutproblemsindoinginternationaltrade.•Foreachquestion23-28ontheoppositepage,choosethec
最新回复
(
0
)