首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
admin
2016-04-11
51
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对于正整数m,存在常数t,使A
m
=t
m—1
A,并求出t;
(2)求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m—1
α
T
=(α
T
α)
m—1
(αα
T
)=([*])
m—1
A=t
m—1
A,其中t=[*].(2)A≠O,A=A,1≤r(A):r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩,故矩阵A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向量可取为(设a
1
≠0):ξ
1
= [*]的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有PAP=diag(0,0,…,0,[*]对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0Aw4777K
0
考研数学一
相关试题推荐
设S(x)=∫0x|cost|dt.证明:当nπ≤x<(n+1)π时,2π≤S(x)<2(n+1).
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设A为3阶实对称矩阵,存在可逆矩阵,使得P-1AP=diag(1,2,-1),A的伴随矩阵A*有特征值λ0,对应的特征向量为α=(2,5,-1)T。求a,b,λ0,的值;
设f(x)是周期为1的周期函数,在[0,1]上可导,且f(1)=0,记证明:存在一点η∈(1,2),使得|f’(η)|≥2M。
设A,B是n阶可逆矩阵,且A-1~B-1,则下列结果①AB~BA②A~B③A2~B2④AT~BT正确的个数为()
设线性方程组的系数矩阵为A,三阶矩阵B≠0,且AB=0,试求λ值.
设F(x)=,则F(x)的定义域是________.
设[(x5+7x4+2)a-x]=b,b≠0,试求常数a,b的值.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
随机试题
下列五输穴中,五行属木且为输穴的是
男性患者,53岁,10天前流涕、咳嗽,未诊治,2—3天后自愈。2天前出现双下肢无力,逐渐加重,次日双上肢亦无力。查体:四肢肌力3级,腱反射低下,感觉正常,无病理征,脑脊液正常。该病的病变部位在
下列法律中,属于经济法的是()。
下列会计凭证中,只需反映金额的有()。
甲公司以其所持有的乙上市公司依法可转让股票出质向银行贷款,并与银行订立了书面质押合同。根据《担保法》的规定,该质押合同生效的时间为( )。
安溪铁观音是()中的珍品。
在电信垄断经营时期,电信普遍服务主要是通过()来实现的。
巴金,原名李尧棠。主要作品为长篇小说“_________三部曲”(《家》《春》《秋》),“_________三部曲”(《雾》《雨》《电》)。
根据下列资料,回答下列题。男性失业人口在全部劳动力人口中所占比重比女性失业人口:
描述数据离中趋势的统计量有()。
最新回复
(
0
)