首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)= (Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型; (Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
设f(x)= (Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型; (Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
admin
2020-02-28
39
问题
设f(x)=
(Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型;
(Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
选项
答案
(Ⅰ)当x≠0,x≠1时,显然f(x)连续。在x=0处,由 [*] 故f(x)在点x=0处不连续,且点x=0是f(x)的第一类间断点。 在x=1处,由 [*] 得f(1+0)=f(1-0)=1+∫
0
1
e
﹣t
2
dt,故f(x)在点x=1处既左连续又右连续,于是f(x)在点x=1处连续。 因此f(x)在(﹣∞,0)∪(0,﹢∞)上连续,点x=0是f(x)的第一类间断点。 (Ⅱ)在第(Ⅰ)问中已求得f(x)在(﹣∞,0)∪(0,﹢∞)上连续,且[*]f(x)存在,要断f(x)在(﹣∞,1]上的有界性,只需考查[*]f(x)是否存在,即 [*], 因为f(x)在(﹣∞,0]上连续,且[*]f(x)存在,则f(x)在(﹣∞,0]上有界。f(x)在(0,1]上连续,且[*]f(x)存在,则f(x)在(0,1]上有界。综上f(x)在(﹣∞,1]上有界。
解析
转载请注明原文地址:https://kaotiyun.com/show/0DA4777K
0
考研数学二
相关试题推荐
证明:当x>0时,(x2-1)lnx≥(x-1)2.
已知ξ=[1,1,一1]T是矩阵的一个特征向量.确定参数a,b及ξ对应的特征值λ;
设f(x)在[a,b]上可导,在(a,b)内二阶可导,f(a)=f(b)=0,f’(a).f’(b)>0.试证:1)ξ∈(a,b),使f(ξ)=0.2)η∈(a,b),使f"(η)=f(η).
已知α=是可逆矩阵A=的伴随矩阵A*的特征向量,特征值λ.求a,b,λ.
将函数展开成(x一2)的幂级数.
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为()
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为时,计算油的质量(长度单位为m,质量单位为kg,油的密度为常数ρ,单位为kg/m3)。[img][/img]
设函数f(χ)有反函数g(χ),且f(a)=3,f′(a)=1,f〞(a)=2,求g〞(3).
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
随机试题
lkm=()m。
如图标志的含义是确定主标志规定区间距离为左右各50米以外的路段。
心房和心室收缩在时间上不重叠,后者必定落在前者完毕后的原因是
明挖爆破施工,施工单位发出“鸣10s、停、鸣10s、停、鸣10s”的音响信号属于()。
某车间主任经常在各工段上巡视,了解员工的工作状况,并及时发现和解决与之交流中间出现的问题,这一过程被称为()。
中央银行存款准备金政策的调控作用主要表现在()。
某企业于2008年度发生经营亏损600万元,至2011年度尚未弥补完毕,按照政府的要求在2012年5月起停产进行政策性搬迁,2015年4月底完成搬迁,则其2008年的亏损的最后一个弥补年度是()。
甲为某国有企业出纳,为竞争公司财务部主任职位欲向公司副总经理乙行贿。甲通过涂改账目等手段从公司提走20万元,委托总经理办公室秘书丙将15万元交给乙,并要丙在转交该款时一定为自己提升一事向乙“美言几句”。乙收下该款。八天后,乙将收受钱款一事报告了公司总经理,
在商品交换中,货币充当交换活动的媒介物,这种媒介商品交换的职能,就是货币的支付手段。
IsThereaWaytoKeeptheBritain’sEconomyGrowing?1.Intoday’sknowledgeeconomy,nationssurviveonthethingstheydo
最新回复
(
0
)