首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且则式①的通解为_______
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且则式①的通解为_______
admin
2019-03-18
54
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶线性非齐次方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为_______
选项
答案
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由线性非齐次方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
均是式①对应的线性齐次方程 y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
-y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/o1V4777K
0
考研数学二
相关试题推荐
已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数υ0,则当点P运动到点(1,1)时,l对时间的变化率是________.
函数f(x)=ln|(x一1)(x一2)(x一3)|的驻点个数为
设函数y=y(x)由方程xef(y)=ey确定,其中f具有二阶导数,且f’≠1,求
设函数y=y(x)满足微分方程y"一3y’+2y=2ex,其图形在点(0,1)处的切线与曲线y=x2一x+l在该点处的切线重合,求函数y的解析表达式.
计算二重积分x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}.
证明奇次方程a0x2n+1+a1x2n+…+a2nx+a2n+1=0一定有实根,其中常数a0≠0.
求下列平面曲线的弧长:(Ⅰ)曲线9y2=x(x-3)2(y≥0)位于x=0到x=3之间的一段;(Ⅱ)曲线=1(a>0,b>0,a≠b).
设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
设f(χ)在[1,+∞)内可导,f′(χ)<0且,f(χ)=a>0,令an=f(k)-∫1nf(χ)dχ.证明:(an)收敛且0≤≤f(1).
设数列{xn}收敛,则()
随机试题
读装配图应从()入手进行概括了解。
复核死刑案件属于狭义的审判监督。
李某和王某正在磋商物流公司的设立之事。通大公司出卖一批大货车,李某认为物流公司需要,便以自己的名义与通大公司签订了购买合同,通大公司交付了货车,但尚有150万元车款未收到。后物流公司未能设立。关于本案,下列哪一说法是正确的?(2016年卷三25题,单选)
进口货物报关单有若干联,下列报关单中()属于报关单的基本联。
金融期权包括看涨期权和看跌期权两种基本类型。()
甲公司的主营业务为船用燃料油的供应服务。为拓展业务范围,2009年甲公司公开发行股票,所募集资金投入到水上加油项目。公司购建了1艘千吨级加油船,2010年上半年已投入开展水上加油业务,2艘800吨级加油船于2010年6月投入运营,另有1艘800吨级加油船将
Thefollowingparagraphsaregiveninawrongorder.ForQuestions41-45,youarerequiredtoreorganizetheseparagraphsintoa
下列叙述中正确的是()。
InthecontemporaryWesternworld,rapidlychangingstylescatertoadesirefor______andindividualism.
A.continuallyB.wastedC.atthetopD.meansE.causesF.everythingG.putH.collectingI.varyJ.appealK.congre
最新回复
(
0
)