首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且则式①的通解为_______
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且则式①的通解为_______
admin
2019-03-18
37
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶线性非齐次方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为_______
选项
答案
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由线性非齐次方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
均是式①对应的线性齐次方程 y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
-y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/o1V4777K
0
考研数学二
相关试题推荐
计算∫0ln2
求曲线y=的一条切线l,使该曲线与切线l及直线x=0,x=2所围成平面图形面积最小.
设x∈(0,1),证明(1)(1+x)ln2(1+x)<x2;
设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
设3阶矩阵A的特征值为2,一2,1,B=A2一A+E,其中E为3阶单位矩阵,则行列式|B|=________.
设y=f(x)可导,且y’≠0.(Ⅰ)若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(x)二阶可导,则=________.
求下列极限:
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
计算下列反常积分:
微分方程xy’+y=0满足条件y(1)=1的解是y=____________.
随机试题
利用资金资源和人力资源的经营效益与一般国有企业相颉颃的报社是()
病变多位于大支气管,以中央型多见的肺癌类型包括
患者,腹痛,里急后重,肛门灼热,下痢脓血,赤多白少,渴欲饮水,舌红苔黄,脉弦数。辨证为热毒痢疾。方剂宜选用
期货从业人员在进行投资分析时,应严格区分客观事实与主观判断,并对重要事实予以明示。()[2010年5月真题]
下列行为中,不适用代理的是()。
受众暴露度、到达率、平均接触频次、毛评点之间的关系是()。
()位于河南洛阳,始建于东汉永平十一年,是佛教传人中国后的第一座寺院,历来有“释源”之誉。
下列关于派生类构造函数和析构函数的说法中,错误的是()。
地面
Itisallverywelltoblametrafficjams,thecostofpetrolandthe【C1】______paceofmodernlife,butmannersontheroadsare
最新回复
(
0
)