首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明: 无论a>0,a
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明: 无论a>0,a
admin
2014-04-16
83
问题
设f(x)在(一∞,+∞)上存在二阶导数,f
’
(0)<0,f
’
(0)=a,f
’’
(x)>0.证明:
无论a>0,a<0,还是a=0,f(x)至多有两个零点,至少有一个零点;
选项
答案
若f(x)有三个或三个以卜零点.则由罗尔定理知f
’
(x)至少有两个零点,对f
’
(x)再用罗尔定理知,f
’’
(x)至少有一个零点.与题设f
’’
(x)无零点矛盾.所以f(x)至多有两个零点.1.2下证f(x)至少有一个零点.设f
’
(0)=a>0,由泰勒公式:[*]当x≠0时,取[*]有f(x)>0由介值定理知,在区间(0,+∞)上f(x)至少有一个零点.又因当x>0时f
’
(x)>f
’
(0)>0,故在区间(0,+∞)上至多有一个零点,故有仅有一个零点。设f
’
(0)=a<0,类似可证往区间(一∞,0)上有且仅有一个零点.设f
’
(0)=a=0,由连续函数保号性及f
’
(x),格单增知.存在δ>0,当x∈(0,δ]时,f(x)<0)且.f
’
(δ)>0.在点x=δ处用泰勒公式,有[*]取[*],有f(x)>0.由介值定理知,在区间(δ,一∞)上,f(x)至少有一个零点.又当x>0时,f
’
(0)>f
’
(0)=0.故在区间(0,+∞)上多至多有一个零点,故有一个零点,同理可证,此时在区间(一∞,0)上也有且仅有一个零点.总之,不论,f
’
(0)=a>(<0或=0)f(x),f(x)在(-∞,+∞)上至少有一个零点.(I)证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/0H34777K
0
考研数学二
相关试题推荐
[2001年]设f(x)的导数在x=a处连续,又则().
(12年)曲线y=渐近线的条数为【】
(1998年)差分方程2yt+1+10yt一5t=0的通解为________。
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若∣A∣=2,∣B∣=3,则分块矩阵的伴随矩阵为【】
(2011年)曲线在点(0,0)处的切线方程为______.
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
(2018年)设平面区域D由曲线及y轴围成,计算二重积分
设A为二阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.若A2a+Aa-6a=0.求P-1AP,并判断A是否相似于对角矩阵.
在曲线y=x2(x≥0)上一点M处作切线,使得切线、曲线及x轴所围成的平面图形D的面积为求:(1)切点M的坐标;(2)过切点M的切线方程.
求方程y"一4y′+4y=e2x的通解.
随机试题
汉魏六朝志怪小说的代表作是()
求函数y=的单调区间以及凹凸区间.
检查蠕形螨最常用的方法是
患者,男,40岁。输血过程中出现头胀、四肢麻木、腰背部剧痛、呼吸急促、血压下降、黄疸等症状。护士可给患者应用热水袋,放置于
我国境内的企业应当以人民币作为记账本位币。()
薛某系某大学体育教师。2014年11月8日11时许,该校校长将薛某叫出,要其将持刀人校闹事的陈某送交派出所。因陈某拒不交刀,继续持刀准备行凶,薛某朝其头部打了两拳,将东某打伤致死。薛某的行为属于()。
张某冒充武警部队军官,以征兵为名义骗取公私财产,数额较大,张某的行为如何处理()
软件系统测试计划需要在()阶段编制。
CAMPINGAlthoughsomegroupsofpeoplehavealwayslivedoutdoorsintents,campingasweknowittodayonlybegantobe
ManyWomenWhoBeatCancerDon’tChangeHabitsManywomenwhobattlebreastcancerwilltellyouit’salife-changingexperi
最新回复
(
0
)