设矩阵A=,E为三阶单位矩阵。 (Ⅰ)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E的所有矩阵B。

admin2019-05-11  33

问题 设矩阵A=,E为三阶单位矩阵。
(Ⅰ)求方程组Ax=0的一个基础解系;
(Ⅱ)求满足AB=E的所有矩阵B。

选项

答案(Ⅰ)对系数矩阵A进行初等行变换如下: [*] 得到方程组Ax=0的同解方程组[*],得到Ax=0的一个基础解系ξ1=[*]。 (Ⅱ)显然B矩阵是一个4×3矩阵,设B=[*],对增广矩阵(A┇E)进行初等行变换如下: [*] 由方程组可得矩阵B对应的三列分别为 [*] 即满足AB=E的所有矩阵为 [*],其中c1,c2,c3为任意常数。

解析
转载请注明原文地址:https://kaotiyun.com/show/0IJ4777K
0

随机试题
最新回复(0)