首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,a)T,β=(3,10,b,4)T. (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表示?写出此表示式.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,a)T,β=(3,10,b,4)T. (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表示?写出此表示式.
admin
2020-09-25
81
问题
已知α
1
=(1,4,0,2)
T
,α
2
=(2,7,1,3)
T
,α
3
=(0,1,一1,a)
T
,β=(3,10,b,4)
T
.
(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表示?
(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表示?写出此表示式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
=β,则有方程组 [*] 对方程组的增广矩阵施以初等行变换, [*] 所以, (1)当b≠2时,R(A)≠R(B),方程组无解,从而可得β不能由α
1
,α
2
,α
3
线性表示. (2)当b=2时,R(A)=R(B),方程组有解,从而可得β可由α
1
,α
2
,α
3
线性表示. [*] 原方程组可变为[*]所以方程组的通解为[*] 从而β=(一2k一1)α
1
+(k+2)α
2
+kα
3
,k∈R [*] 所以方程组的解为[*]所以β=一α
1
+2α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Jx4777K
0
考研数学三
相关试题推荐
曲线y=x2与直线y=x+2所围成的平面图形面积为________.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2014年]下列曲线有渐近线的是().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
随机试题
根据《有关贯彻的通知》的规定,下列关于加强对划拨土地上开发活动和集体建设用地流转的管理表述,不正确的是()
由于统计目的和核算对象不同,行业分类的基本单位除采用产业活动单位外,也可以采用法人单位。()
诉讼时效期间从( )计算。
制定个人隐私保护的八项基本原则的机构或组织是()。
从公共仓储作业的角度来看,月度的仓储支出依据空间利用以期弥补仓储设施的()。
艾森克人格发展阶段中主要任务是获得主动感,克服内疚感,属于人格发展的()
一般侵权民事责任的构成要件。[浙江财大2015年研]
抗战胜利后,中国共产党提出“和平、民主、团结”三大口号,曾经希望通过和平的途径对中国进行政治社会的改革,逐步向新中国这个目标迈进。请回答:当时中国共产党为什么曾经希望通过和平途径对中国进行政治社会改革?
若磁盘的转速提高一倍,则( )。
与"SELECTDISTINCT产品号FROM产品WHERE单价>=ALL(SELECT单价FROM产品WHERESUBSTR(产品号,1,1)="2")"等价的SQL命令是( )。
最新回复
(
0
)