首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT. 求:(1)A2; (2)矩阵A的特征值和特征向量.
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT. 求:(1)A2; (2)矩阵A的特征值和特征向量.
admin
2019-03-19
60
问题
(98年)设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0.记n阶矩阵A=αβ
T
.
求:(1)A
2
;
(2)矩阵A的特征值和特征向量.
选项
答案
(1)由α
T
β=0,有β
T
α=0.由A=αβ
T
,有 A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)(αβ
T
)=O 即A
2
为n阶零矩阵. (2)设λ为A的任一特征值,χ(≠0)为对应的特征向量,则Aχ=λχ,两端左乘A,得A
2
χ=λAχ=λ
2
χ,因为A
2
=O,所以λ
2
χ=0,又χ≠0,故λ=0.即矩阵A的特征值全为零. 不妨设向量α,β中分量a
1
≠0,b
1
≠0,对齐次方程组(0E-A)χ=0的系数矩阵施行初等行变换: [*] 由此可得方程组(OE-A)χ=0的基础解系为: α
1
=(-[*],1,0,…,0)
T
,α
2
=(-[*],0,1,…,0)
T
,…,α
n-1
=(-[*],0,0,…,1)
T
于是,A的属于特征值λ=0的全部特征向量为: c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
是不全为零的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/aeP4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]可导,f(a)=f{(x)},则()
求幂级数的收敛域及和函数。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Q),下的标准形为y12+y22,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
的通解为______.
设L:y=sinx(0≤x≤),由x=0,L及y=sinx围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中0≤t≤.(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(x);(2)f(x)的极值.
直角坐标中的累次积分I=f(x,y)dy化为极坐标先r后θ次序的累次积分I=___________.
设试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
设则A-1=_______.
随机试题
迷走神经兴奋使心率减慢,是由于窦房结细胞发生下列哪种改变所致?
下列哪一项是可以显示胎儿体表结构立体形态的三维超声技术
动脉造影常规采用___________穿刺
患者,女,19岁。感冒后身热不适,干咳无痰,咽干口渴,右脉数大。治疗应首选
某女性青年反复出现皮肤淤血点,并有鼻出血,月经过多,近来出现贫血、脾大。错误的护理措施是
以灭火为目的的水喷雾灭火系统的适用范围有哪些?
上市公司发行新股时的《招股说明书》中发行人应披露最近()年内募集资金运用的基本情况。
秦始皇统一中国后,采取了“书同文”的政策,将文字统一为_____。
设x2+y2≤2ay(a>0),则在极坐标下的累次积分为().
Specializationcanbeseenasaresponsetotheproblemofanincreasingaccumulationofscientificknowledge.Bysplittingupt
最新回复
(
0
)