首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
两种小麦品种从播种到抽穗所需的天数如下: 设两样本依次来自正态总体N(μ1,σ12),N(μ2:σ22),μi,σi,i=1,2,均未知,两样本相互独立。 若能接受H0,接着检验假设H'0:μ1=μ2,H'1:μ1≠μ2(取α=0.05)。
两种小麦品种从播种到抽穗所需的天数如下: 设两样本依次来自正态总体N(μ1,σ12),N(μ2:σ22),μi,σi,i=1,2,均未知,两样本相互独立。 若能接受H0,接着检验假设H'0:μ1=μ2,H'1:μ1≠μ2(取α=0.05)。
admin
2019-03-25
65
问题
两种小麦品种从播种到抽穗所需的天数如下:
设两样本依次来自正态总体N(μ
1
,σ
1
2
),N(μ
2
:σ
2
2
),μ
i
,σ
i
,i=1,2,均未知,两样本相互独立。
若能接受H
0
,接着检验假设H'
0
:μ
1
=μ
2
,H'
1
:μ
1
≠μ
2
(取α=0.05)。
选项
答案
S
ω
2
=[*]=0.805。 则有 ∣t∣=[*]=0.748<t
0.025
(18)=2.100 9, 故接受H'
0
,认为所需天数相同。
解析
转载请注明原文地址:https://kaotiyun.com/show/0W04777K
0
考研数学一
相关试题推荐
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设总体X的概率密度为:其中θ为未知参数,x1,x2,…,xn为来自该总体的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
设某种元件的使用寿命X的概率密度为其中θ>0为未知参数,又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值。
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40(cm),则μ的置信度为0.95的置信区间是________。(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95。)
随机试题
某市今年进入夏天以来,不少市民发现蚊子越来越多,简直无法控制。之所以出现这种情况,有医学专家认为,由于该市今年气温比去年同期要高,而高温天气有利于蚊子的生长,这就使得今年的蚊子比往年多。下列选项中,最能削弱该专家观点的是()。
为个人学习、研究使用他人已经发表的作品的,不需要支付报酬,但应当指明()。
已知某普通股的13值为1.2,无风险利率为6%,市场组合的必要收益率为10%,该普通股的当前市价为10.5元/股,筹资费用为0.5元/股,股利年增长率长期固定不变,预计第一期的股利为0.8元,按照股利增长模型和资本资产定价模型计算的股票资本成本相等,则该普
金融市场具有的功能有()
在社会主义市场经济条件下,公共财政的职能包括()。
“举一反三”“闻一知十"属于迁移的()
下列措施属于政府发挥社会职能的是()。
英国科学家研制出了一种专门清除太空垃圾的人造卫星,这就是我们所说的太空“清洁工”,它可以帮助解决太空垃圾这个令人头疼的问题。太空“清洁工”的质量只有6千克,制造和发射的费用,不到100万美元。别看它个儿不大,本领可不小,它装有4台摄像机,用于搜索上下、左右
(Thesimplest)kindofplant,(alike)thesimplestkindofanimal,(consistsof)(onlyone)cell.
Passage1
最新回复
(
0
)