首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ∈(0,+∞)为未知参数X1,X2,…,Xn为来自总体X的简单随机样本,T=max{X1,X2,…,Xn}。 (Ⅰ)求T的概率密度; (Ⅱ)确定a,使得aT为θ的无偏估计。
设总体X的概率密度为 其中θ∈(0,+∞)为未知参数X1,X2,…,Xn为来自总体X的简单随机样本,T=max{X1,X2,…,Xn}。 (Ⅰ)求T的概率密度; (Ⅱ)确定a,使得aT为θ的无偏估计。
admin
2018-04-11
76
问题
设总体X的概率密度为
其中θ∈(0,+∞)为未知参数X
1
,X
2
,…,X
n
为来自总体X的简单随机样本,T=max{X
1
,X
2
,…,X
n
}。
(Ⅰ)求T的概率密度;
(Ⅱ)确定a,使得aT为θ的无偏估计。
选项
答案
(Ⅰ)设X的分布函数为F(x)。当0<x<θ时,F(x)=[*],所以 [*] 则T的分布函数为 F
T
(x)=P{T≤x}=P{X
1
≤x,X
2
≤x,X
3
≤x} =[*]P{X
1
≤x}=[F(x)]
3
, 于是T的概率密度为 f
T
(x)=3[F(x)]
2
f(x)=[*] (Ⅱ) E(aT)=a.E(T)=a∫
—∞
+∞
xf
T
(x)dx=a∫
0
θ
9x
9
/θ
9
dx=9a/10θ, 令E(aT)=θ,则a=10/9。
解析
转载请注明原文地址:https://kaotiyun.com/show/Qer4777K
0
考研数学一
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知线性方程组a,b为何值时,方程组有解;
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k满足__________.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
若P(x,y),Q(x,y)在单连通域G内有一阶连续偏导数,且对G内任意简单闭曲线L有,则③曲线积分与路径无关;④P(x,y)dx+Q(x,y)dy是某个函数μ(x,y)的全微分。这四种说法中正确的是()。
计算曲面积分其中S是球面x2+y2+z2=a2的上半部分与平面z=0所围成的闭曲面外侧。
设X1,X2,…,Xn是取自标准正态总体的简单随机样本,已知统计量服从t分布,则常数α=________。
设事件A、B、C两两独立,且ABC=φ,P(A)=P(B)=P(C)=p,问p可能取的最大值是多少?
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-在广告费用不限的情况下,求最优广告策略;
设f(x)二阶可导,f(0)=0,令g(x)=(1)求g’(x);(2)讨论g’(x)在x=0处的连续性.
随机试题
夫物不产于秦,可宝者多;士不产于秦,而愿忠者众。(《谏逐客书》)
不宜与赤石脂及其制剂同时服用的中成药是
高血压病患者睡眠时突感极度胸闷,气急,大汗淋漓,咳嗽,咯大量粉红色泡沫痰,端坐呼吸,血压26.6/14.7kPa(200/110nmmHg),心率110次/分下列哪项护理是错误的
某公司期初资产总额为300000元,当期期末负债总额比期初减少20000元,期末所有者权益比期初增加80000元。则该企业期末权益总额为()元。
下列各项关于企业担保业务内部控制的表述中,正确的是()。
赵某在公共汽车上因不慎踩到售票员而与之发生口角,售票员在赵某下车之后指着他大喊:打小偷!赵某因此被数名行人扑倒在地致伤。。对此应由谁承担责任?()
方程2ax2-2x-3a+5=0的一个根大于1,另一个根小于1。(1)a>3(2)a<0
存储容量是磁盘驱动器的重要技术指标,下列哪一项与磁盘存储器的容量无关( )
在程序运行期间可以将图形装入窗体、图片框或图像框的函数是
OnenighttheFrenchmanwentoutforawalk______.Theword"frighten"inthepassagemeans______.
最新回复
(
0
)