首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上可导,f(1)=2∫01/2x2f2(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
设f(x)在区间[0,1]上可导,f(1)=2∫01/2x2f2(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
admin
2022-10-25
44
问题
设f(x)在区间[0,1]上可导,f(1)=2∫
0
1/2
x
2
f
2
(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
选项
答案
令φ(x)=x
2
f(x),由积分中值定理得f(1)=2∫
0
1/2
x
2
f(x)dx=c
2
f(c),其中c∈[0,1/2],即φ(c)=φ(1),显然φ(x)在区间[0,1]上可导,由罗尔中值定理,存在ξ∈(c,1)∈(0,1),使得φ’(ξ)=0.而φ’(x)=2xf(x)+x
2
f’(x),所以2ξf(ξ)+ξ
2
f’(ξ)=0,注意到ξ≠0,故2f(ξ)+ξf’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/0bC4777K
0
考研数学三
相关试题推荐
设,其中f(u,v)是连续函数,则dz=___________·
0.96875
设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
求齐次方程组的基础解系.
设f(x)与g(x)在区间[0,1]上都是正值的连续函数,且有相同的单调性.试讨论的大小关系.
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明:y〞+P(x)yˊ+Q(x)y=f(x)(1)(1)y1,y2是线性无关的;(2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
求曲线与x轴围成的区域绕x轴、y轴形成的几何体体积.
设函数f(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx,且当x∈[0,π)时,f(x)=x,求[*]
设f(x)为连续函数,且F(x)=f(t)dt,则Fˊ(x)=_________.
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
随机试题
看板的种类有许多种,常见的形式有()
下列关于划拨建设用地使用权转让的条件,正确的是()。
在货币乘数不变的条件下,金融当局即可通过控制()来控制整个货币供给量。
甲供热公司将锅炉安装工程发包给资质符合要求的乙公司,下列对现场安全管理的做法中,错误的是()。
危险物品的生产、经营、储存单位以及矿山、建筑施工单位()。
某商品流通企业的物流部门只为本企业提供服务。随着物流业振兴规划的出台,企业的决策层对市场上现有的物流企业进行了调查分析,对本企业的资金运作、物流部门的员工及其技能、物流设备及其运转能力等内部条件进行了认真的分析研究,决定成立一个独立经营、自负盈亏的MK物流
一个测验或测量工具能够正确测量所要测量事物的属性或特征的程度被称为【】
小学四年级新上任的班主任刘老师经过一个月的观察,总结了班里每个学生的特长,并据此展开有针对性的教学,刘老师的做法体现了尊重个体身心发展的()。
用下列词语组成一段话。词语可颠倒顺序:公务员、政府、民生、民意、惠民、爱民、公仆、贪污、渎职、惩处。
在IEEE802.11b点对点模式中,唯一需要的无线设备是()。
最新回复
(
0
)