首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
admin
2019-11-25
44
问题
就k的不同取值情况,确定方程x
3
-3x+k=0根的个数.
选项
答案
令f(x)=x
3
-3x+k,[*]f(x)=-∞,[*]f(x)=+∞. 由f’(x)=3x
2
-3=0,得驻点为x
1
=-1,x
2
=1.f”(x)=6x,由f”(x-1)=-6, f”(1)=6,得x
1
=-1,x
2
=1分别为f(x)的极大值点和极小值点,极大值和极小值分别为f(-1)=2+k,f(1)=k-2. (1)当k<-2时,方程只有一个根; (2)当k=-2时,方程有两个根,其中一个为x=-1,另一个位于(1,+∞)内; (3)当-2<k<2时,方程有三个根,分别位于(-∞,-1),(-1,1),(1,+∞)内; (4)当k=2时,方程有两个根,一个位于(-∞,-1)内,另一个为x=1; (5)当k>2时,方程只有一个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/0bD4777K
0
考研数学三
相关试题推荐
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为αs=α1+2α2+3α3+…+(s一1)αs-1(1)证明齐次线性方程组α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0(
设非齐次线性方程组Ax=[α1,α2,α3,α4]x=α5有通解k[-1,2,0,3]T+[2,一3,1,5]T.(1)求方程组[α2,α3,α4]x=α5的通解;(2)求方程组[α1,α2,α3,α4,α4+α5]x=α5的
已知方程组与方程组是同解方程组,试确定参数a,b,c.
已知方程组(I)及方程组(Ⅱ)的通解为k1[一1,1,1,0]T+k2[2,一1,0,1]T+[一2,一3,0,0]T.求方程组(I),(Ⅱ)的公共解.
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设线性方程组则λ为何值时,方程组有解,有解时,求出所有的解.
设f(x)=x3+4x2一3x-1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
随机试题
A、基托过薄B、人工牙磨耗C、开盒过早致基托变形D、模型不准确E、人工牙盖嵴部蜡质未去净容易出现基托不密合的是
缓脉的主病为
根据《建筑安装工程费用项目组成》(建标[2003]206号)文件的规定,下列属于直接工程费中人工费的是生产工人( )。
信用风险监控是信用风险管理流程的重要环节,下列关于信用风险监控的说法错误的是()。
谥号按其性质大致可分为颂扬、批评、同情三类,以颂扬为主。()
老年人的基础代谢与中年人相比降低了()。
关于气质类型说的是()。
【2014.广西】对班级授课制首次进行理论论证的教育家是()。
用200字简要阐述数据仓库的数据特点中的面向主题和强调时间序列具体是指什么。轻量级数据仓库的构建模型,主要包括如下几个步骤:根据需求定制主题集合,定制事实表采集规则,编程接口之实现。用100字分析在列出的这些步骤是否能够建立轻量级数据仓库的构建模型,如
Mostofusthinkweknowthekindofkidwhobecomesakiller,andmostofthetimewe’reright.Boys【C1】______about85%ofa
最新回复
(
0
)