首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为 αs=α1+2α2+3α3+…+(s一1)αs-1 (1)证明齐次线性方程组 α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0 (
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为 αs=α1+2α2+3α3+…+(s一1)αs-1 (1)证明齐次线性方程组 α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0 (
admin
2018-09-20
75
问题
设n维向量α
s
可由α
1
,α
2
,…,α
s-1
唯一线性表示,其表出式为
α
s
=α
1
+2α
2
+3α
3
+…+(s一1)α
s-1
(1)证明齐次线性方程组
α
1
x
1
+α
2
x
2
+…+α
i-1
x
i-1
+α
i+1
x
i+1
+…+α
s
x
s
=0 (*)
只有零解(i=1,2,…,s);
(2)求线性非齐次方程组
α
1
x
1
+α
2
x
2
+…+α
s
x
s
=α
1
+2α
2
+…+sα
s
(**)
的通解.
选项
答案
(1)齐次线性方程组α
1
x
1
+α
2
x
2
+…+α
i-1
x
i-1
+α
i+1
x
i+1
+…+α
s
x
s
=0只 有零解[*]r(α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
)=s—1(未知量个数)[*]α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
线性无关. 设有数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,使得 k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
=0. 将题设条件α
s
=α
1
+2α
2
+…+(s一1)α
s-1
代入上式,得 k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s-1
α
s-1
+k
s
[α
1
+2α
2
+…+(s—1)α
s-1
]=0, 即 (k
1
+k
s
)α
1
+(k
2
+2k
s
)α
2
+…+[k
i-1
+(i一1)k
s
]α
i-1
+ik
s
α
i
+ [k
i+1
+(i+1)k
s
]α
i+1
+…+[k
s-1
+(s-1)k
s
]α
s-1
=0. 由条件知,α
1
,α
2
,…,α
s-1
线性无关,故有 [*] 因i≠0,由ik
s
=0,得k
s
=0,从而有k
1
=k
2
=…=k
i-1
=k
i+1
=…=k
s-1
=0. 所以α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
线性无关,于是方程组(*)只有零解. (2)因α
1
,α
2
,…,α
s-1
线性无关,α
s
=α
1
+2α
2
+3α
3
+…+(s—1)α
s-1
,有 r(α
1
,α
2
,…,α
s-1
)=s一1=r(α
1
,α
2
,…,α
s
,(α
1
+2α
2
+…+sα
s
)). 故方程组(**)有通解kξ+η,其中 ξ=[1,2,…,(s-1),一1]
T
,η=[1,2,…,s]
T
,k是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/lkW4777K
0
考研数学三
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为________.
设随机变量X1,X2,X3,X4独立同分布,且X1~(i=1,2,3,4),求X=的概率分布.
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为________.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
设矩阵A=行列式|A|=—1,又A*的属于特征值λ0的一个特征向量为α=(—1,—1,1)T,求a,b,c及λ0的值。
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T(Ⅰ)求方程组(1)的一个基础解系;(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非
设函数f(u)可微,且f’(0)=,则z=分(4x2一y2)在点(1,2)处的全微分dz|(1,2)=________。
随机试题
A.太冲、太溪B.合谷、丰隆C.足三里、气海D.太溪、风池中风中经络中属气虚血瘀者除选主穴外还可配用
亚里士多德认为悲剧韵作用在于【】
胎盘剥离征象不包括
某患者经常毁坏红颜色的物品如电话机、衣服等,谓“红色要我死亡”,此症为()
美国一家以生产服装为主的知名公司,为开拓国际市场,方便业务往来,现拟在我国的几个大城市各设一个办事处。下列表述中符合我国公司法的规定的一项是________。
高层建筑的雨水管一般要用()。
下列关于保修义务的承担和维修的经济责任承担应当遵循的处理原则的说法中,正确的有()。
不同部门或人群对教师职业有不同的期待,使得教师有时候左右为难,这是()
中共中央、国务院印发的《国家创新驱动发展战略纲要》提出,到2020年我国进入()。
December20th1998DearEditor,TheAmericanrailroadindustry’scommitmenttosafetyisdemonstratedbyasteadilydeclinin
最新回复
(
0
)