首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=x3+4x2一3x-1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
设f(x)=x3+4x2一3x-1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
admin
2018-09-20
33
问题
设f(x)=x
3
+4x
2
一3x-1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
选项
答案
因为f(一5)=一11<0,f(-1)=5>0,f(0)=一1<0,所以f(x)在[-5,一1]及[一1,0]上满足零点定理的条件,故存在ξ
1
∈(一5,一1)及ξ
2
∈(一1,0),使得f(ξ
1
)=f(ξ
2
)=0,所以方程f(x)=0在(-∞,0)内存在两个不等的实根.又因为f(1)=1>0,同样f(x)在[0,1]上满足零点定理的条件,在(0,1)内存在一点ξ
3
,使得f(ξ
3
)=0,而f(x)=0为三次多项式方程,它最多只有三个实根,因此方程f(x)=0在(一∞,0)内只有两个不等的实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/mjW4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为________.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设则f(x)在点x=0处().
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
设问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解.
随机试题
有关肾实质的描述哪项错误()
月经血不发生凝固的原因是()
在肺部CT轴位图像中,哪一解剖层面能同时看到头臂干血管
影响评价结果真实性的选择偏倚因素是
下列关于血液pH值的叙述,错误的是
产品功能可从不同的角度进行分析,按功能的性质不同,产品的功能可分为()。
根据《商业银行个人理财业务管理暂行办法》,保证收益理财计划中的保证收益()。
下列各项属于资金成本使用费的有()。
第一次、第二次鸦片战争各在何时爆发的?
设函数f(x)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f’’(x)<0,则=在(0,a]上().
最新回复
(
0
)