首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,-1,3,3)T,b2=(0,1,-1,-1)T所生成的向量空间记作L2,试证L1=L2.
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,-1,3,3)T,b2=(0,1,-1,-1)T所生成的向量空间记作L2,试证L1=L2.
admin
2016-05-09
65
问题
由a
1
=(1,1,0,0)
T
,a
2
=(1,0,1,1)
T
所生成的向量空间记作L
1
,由b
1
=(2,-1,3,3)
T
,b
2
=(0,1,-1,-1)
T
所生成的向量空间记作L
2
,试证L
1
=L
2
.
选项
答案
因为a
1
=(1,1,0,0)
T
,a
2
=(1,0,1,1)
T
,二者不成比例,因此r(a
1
,a
2
)=2. 同理r(b
1
,b
2
)=2,又 [*] 于是 r(a
1
,a
2
)=r(b
1
,b
2
)=r(a
1
,a
2
,b
1
,b
2
)=2. 由向量组等价的充要条件知向量组a
1
,a
2
与b
1
,b
2
等价,从而L
1
=L
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/0gw4777K
0
考研数学一
相关试题推荐
[*]
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求B
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:存在一点ξ∈(0,1),使得f’’(ξ)=0
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设向量=(1,1,﹣1)T是A=的一个特征向量证明:A的任一特征向量都能由a线性表示
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
随机试题
简述青少年情绪表现的矛盾性特点。
领导方法的特征体现为_______、_______、_______、_______、_______。
人体维生素D的主要来源是
不属于角膜变性的疾病是
每股股票所代表的实际资产的价值,可称为()。
在Excel2003中,下列哪些输入方式输入的是日期型数据?()
阅读材料(二)开学不久,陈老师发现杨朗同学有许多毛病。陈老师心想,像杨朗这样的同学缺少的不是批评而是肯定和鼓励。一次,陈老师找他谈话说:“你有缺点,但你也有不少优点,可能你自己还没有发现。这样吧,我限你在两天内找到自己的一些长处,不然我可要批评你
根据国内外的研究和实践,人的心理健康水平大致可划分为三个等级,分别是________、轻度失调心理、________。
下列古语与物理现象对应错误的是:
秒杀
最新回复
(
0
)