首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
admin
2019-01-14
60
问题
设α
1
,α
2
,α
3
,α
4
是4维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
9α
2
,α
2
+α
3
,3α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
,α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
由Ax=0的基础解系仅含1个解向量,知|A|=0且R(A)=4-1=3,所以R(A
*
)=1,那么A
*
x=0的基础解系应含3个解向量,故排除(D)。
又由题设有(α
1
,α
2
,α
3
,α
4
)(1,0,2,0)
T
=0,即α
1
+2α
3
=0,亦即α
1
,α
3
线性相关,所以排除(A)、(B),故选择(C)。
转载请注明原文地址:https://kaotiyun.com/show/0kM4777K
0
考研数学一
相关试题推荐
已知ξ1,2是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是().
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3,Aα3=-α1+α2+2α3.求A的特征值,并求可逆矩阵P,使P-1AP为对角矩阵.
设R4的三个基(Ⅰ)、(Ⅱ)、(Ⅲ)分别为求由基(Ⅱ)到基(Ⅲ)的过渡矩阵.
确定常数a和b的值,使f(x)=x一(a+)sinx当x→0时是x的5阶无穷小量.
计算曲面积分,其中曲面∑是球面x2+y2+z2=a2的下半部分,γ是∑向上的法向量与z轴正向的夹角.
计算三重积分(x2+y2+z2)dV,其中Ω={(x,y,z)|x2+y2+z2≤4,x2+y2+z2≤4z}.
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
设一批零件的长度服从正态分布N(μ,σ2),其中σ2已知,μ未知.现从中随机抽取n个零件,测得样本均值,则当置信度为0.90时,判断μ是否大于μ0的接受条件为
设则()
(2018年)设则()
随机试题
“五四”以来,郁达夫的小说多采用“________”的方式和第一人称的写法进行写作。
患者,男性,69岁,前列腺增生。前列腺增生症对患者的主要危害是
A.穿透作用B.荧光作用C.电离作用D.感光作用E.着色作用铅玻璃长期受X线照射产生
患者,女性,35岁。3天来不吃饭,只喝水,说有人一直在告诉她饭里有毒,要求家人陪同去派出所报案。从题干信息还能得知患者可能存在
下列有关公司债券上市交易条件的意见,正确的是:()
一工人在10米高的桥墩上施工属于()
(一)[背景资料]河北省某路桥有限公司通过竞标竞得河北唐山某桥梁工程,该路桥有限公司在承担该工程项目施工任务后,立即组建项目经理部,该项目经理部为达到安全文明施工,预防事故的发生,在施工前制订了施工现场安全生产保证计划。施工单位在施工
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
Earlyonemorning,morethanahundredyearsago,anAmericaninventorcalledEliasHowefinallyfellasleep.【R1】______Butheha
【B1】【B5】
最新回复
(
0
)