首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
admin
2019-01-14
83
问题
设α
1
,α
2
,α
3
,α
4
是4维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
9α
2
,α
2
+α
3
,3α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
,α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
由Ax=0的基础解系仅含1个解向量,知|A|=0且R(A)=4-1=3,所以R(A
*
)=1,那么A
*
x=0的基础解系应含3个解向量,故排除(D)。
又由题设有(α
1
,α
2
,α
3
,α
4
)(1,0,2,0)
T
=0,即α
1
+2α
3
=0,亦即α
1
,α
3
线性相关,所以排除(A)、(B),故选择(C)。
转载请注明原文地址:https://kaotiyun.com/show/0kM4777K
0
考研数学一
相关试题推荐
设有向量组α1=(1,1,1,2)T,α2=(3,a+4,2a+5,a+7)T,α3=(4,6,8,10)T,(1)求向量组α1,α2,α3,α4的秩及其一个极大线性无关组;(2)若β=(0,1,3,6)T不能由α1,α2,α3,α4线
证明n阶矩阵相似.
已知非齐次线性方程组求解方程组(Ⅰ),用其导出组的基础解系表示通解.
已知向量组(Ⅰ)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)βα1=(1,-3,6,-1)T,βα2=(a,0,b,2)T等价,求a,b的值.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.计算
已知三元二次型xTAx经正交变换化为2y12-y22-y32,又知A*α=α,其中α=(1,1,-1)T,求此二次型的表达式.
求曲线在点M0(1,1,3)处的切线与法平面方程.
设随机变量且P{|X|≠|Y|}=1.(I)求X与Y的联合分布律,并讨论X与Y的独立性;(Ⅱ)令U=X+Y,V=X-Y,讨论U与V的独立性.
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,记Y=a(X1—2X2)2+b(3X3—4X4)2,其中a,b为常数.已知Y~χ2(n),则
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
随机试题
A.颈外动脉B.锁骨下动脉C.甲状颈干D.上颌动脉E.胸廓内动脉脑膜中动脉发自()
肺大疱
患者,女,30岁。尿频、尿痛2天。检查:体温38℃,右肾区叩击痛,尿蛋白(±),尿中红细胞2—4/HP,白细胞20~30/HP。应首先考虑的是()
护士应首先考虑病人发生了( )。病情继续发展可能出现的典型症状是( )。
防水层外观检查要求,正确的包括()。
王先生夫妇今年都刚过40岁,年收入20万元左右,打算60岁退休,估计夫妇退休后第一年生活费为10万元,考虑到通货膨胀的因素,夫妻俩每年的生活费用估计会以每年3%的速度增长。预计两人寿命可达80岁,并且现在拿出10万元作为退休基金的启动资金。夫妻俩均享受国家
下列关于商业银行资本的说法,正确的是()。
按照我国企业会计准则的规定,编制合并现金流量表时,需抵销的内容有()。
公务员制度
求下列极限:
最新回复
(
0
)