首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解线性方程组
解线性方程组
admin
2019-05-08
51
问题
解线性方程组
选项
答案
解一 用初等行变换将其增广矩阵[*]化为含最高阶单位矩阵的矩阵[*],即 [*] 显然秩[*]=秩(A)=3n=4,故一个基础解系只含n-秩(A)=4-3=1个解向量α.又因最高阶(三阶)单位矩阵位于A
1
中的第2,3,4列,故α的第2,3,4个分量分别为A
1
中其余的一列,即第1列的前3个分量反号,而α的第1个分量为一阶单位矩阵,即为1,因而 α=[1,-2,-1,-0]
T
=[1,-2,-1,0]
T
. 又由[*]的最后一列还得知一特解η
0
=[0,-2,3,6]
T
,于是原方程组的通解为 X=kα+η
0
(k为任意实数). 解二 用高斯消元法求解.对增广矩阵[*]作初等行变换,得到 [*] 已将[*]化成了行阶梯形,其与首非零元对应的未知量为x
1
,x
2
,x
4
,选它们为独立未知量,则x
3
就是自由未知量,于是易得到用自由未知量x
3
表示独立未知量的同解方程组,即 [*] 则方程组的通解用自由未知量可表示为 [*] 若令x
3
=k,也可得到方程组的参数形式的通解 x
1
=3-k, x
2
=-8+2k, x
3
=k, x
4
=6, 其中k为任意常数. 在此基础上也可将上述通解改写成用对应齐次方程组的基础解系和原方程组的一特解来表示,即 X=[x
1
,x
2
,x
3
,x
4
]
T
=[3-k,-8+2k,k,6]
T
=[3-k,-8+2k,0+k,6+0k]
T
=[3,-8,0,6]
T
+[-k,2k,k,0]
T
=[3,-8,0,6]
T
+k[-1,2,1,0]
T
. 可见,求出用自由未知量表示的通解①是求其他形式的通解的基础.
解析
转载请注明原文地址:https://kaotiyun.com/show/0sJ4777K
0
考研数学三
相关试题推荐
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
求幂级数的收敛域.
证明:当x>1时,.
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令Y=F(x),求Y的分布函数FY(y)。
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
设f(x)在[a,+∞)上连续,f(x)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
随机试题
行车中遇到后方车辆要求超车时,应________。
A起自足背静脉弓B经外踝前方上行C无静脉瓣D注入胫后静脉E注入髂外静脉小隐静脉
休克的治疗原则包括
A.胺类激素B.肽类激素C.蛋白质激素D.类同醇激素血管升压素是
属于颅后窝的孔裂是
与企业甲签订的运输合同,应缴纳的印花税为( )元。与个人了签订房屋出租合同,应缴纳的印花税为( )元。
在试算平衡表上,虽然实现了期初余额、本期发生额和期末余额三栏的衡等关系,但仍然。不能保证账户记录是完全正确的。()
平行四边形:长方形:正方形
桉树由于受昆虫和真菌的侵害生长速度缓慢,因而成为一种优质木材。19世纪桉树被引进美国,失去了昆虫和真菌的危害,加之适宜的水土环境,生长速度极快,因而成为易开裂和弯曲的废材。桉树从优质木材变成废材说明了()。
华氏度和摄氏度均是测量温度的单位,摄氏度规定水的冰点温度为0度,沸水温度为100度;华氏度规定水的冰点为32度,沸点为212度。某时刻华氏度比摄氏度数值上高60度,则该时刻为:
最新回复
(
0
)