首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数? (1)f(x2) (2)xf(x2) (3)x2f(x) (4)f2(x) (5)f(|x|)
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数? (1)f(x2) (2)xf(x2) (3)x2f(x) (4)f2(x) (5)f(|x|)
admin
2012-01-29
90
问题
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数?
(1)f(x
2
) (2)xf(x
2
)
(3)x
2
f(x) (4)f
2
(x)
(5)f(|x|) (6)|f(x)|
(7)f(x)+f(-x) (8)f(x)-f(-x)
选项
答案
(1)设g(x)=f(x
2
),则g(-x)=f((-x)
2
)=f(x
2
)=g(x) ∴f(x
2
)必为偶函数. (2)设g(x)=xf(x
2
),则g(-x)=(-x)f[(-x)
2
]=-xf(x
2
)=-g(x) ∴xf(x
2
)必为奇函数. (3)设g(x)=x
2
f(x),则g(-x)=(-x)
2
f(-x)=x
2
f(-x) ∵f(-x)奇偶性不能确定 ∴x
2
f(x)奇偶性不定. (4)设g(x)=f
2
(x),则g(-x)=f
2
(-x)≠f
2
(x)且f
2
(x)≠-f
2
(x) ∴f
2
(x)奇偶性不定. (5)设g(x)=f(|x|),则g(-x)=f(|x|)=f(|x|)=g(x) ∴f(| x |)必为偶函数. (6)设g(x)=|f(x)|,则g(-x)=| f(-x)|≠|f(x)|且|f(-x)|≠-|f(x)| ∴|(x)|奇偶性不定. (7)设g(x)=f(x)+f(-x),则 g(-x)=f(-x)+f[-(-x)]=f(-x)+f(x)=g(x) ∴f(x)+f(-x)必偶函数. (8)设g(x)=f(x)-f(-x),则 g(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=[f(x)-f(-(x))]=-g(x) ∴f(x)-f(-x)必为奇函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/0vC4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
在考核中,若学员中靶两次,则认定合格而停止射击,但限定每人最多只能射击三次.设事件A=“考核合格”,B=“最多中靶一次”,C=“射击三次”,已知学员中靶率为p(0<P<1),则
A、 B、 C、 D、 A
A、 B、 C、 D、 C
设方阵A满足2000A=10A2一E,则(A一100E)-1=_____.
设平面区域D={(x,y)|x3≤y≤1,一1≤x≤1},f(x)是定义在[一a,a](a≥1)上的任意连续函数,则[(x+1)f(x)+(x一1)f(一x)]dxdy=_______.
求由曲线y=3一x2与圆x2+(y—1)2=4所围图形中含坐标原点那一部分的面积.
设f(x)在[2,4]上连续,在(2,4)内可导,且f(2)=.证明:存在ε∈(2,4),使.
求微分方程2y"+y’-Y=(4—6x)e-x满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
随机试题
公民依据宪法法律规定监督国家机关及其工作人员活动的权利,指的是()
通信子网一般由________等部分组成。
代偿型DIC主要表现为
《协议出让国有土地使用权规定》规定,市、县人民政府国土资源行政主管部门公布国有土地使用权出让计划接受申请的时间不得少于()日。
()是指在企业与其他单位和个人之间发生的各种经济利益的交换,如购买材料、产品销售等。
出纳员的当日账务要当日结清,出现差错必须当日查清,不准过夜。()
人民检察院依法对公安机关的侦查活动是否合法实行监督。这方面监督的主要内容是发现和纠正公安机关及其人民警察()等违法行为。
李某给有关部门写信,反映自己关于推进素质教育的意见,这是公民依法行使()。
天然颜料的取材很广泛,不仅可以从矿物中提取,还可以从植物中提取,且原材料价格十分低廉。然而天然颜料的价格会受到马弗炉价格的影响,因为从原材料中提取天然颜料需要使用大量的制备工具。基于上述断定,最可能得出的结论是()。
制约着人才培养规格和教育结构的是()
最新回复
(
0
)