首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x3+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=yx12+yx22+4yx32,求参数a,6及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x3+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=yx12+yx22+4yx32,求参数a,6及正交矩阵Q.
admin
2019-01-05
26
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
3
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY化为标准形f=yx
1
2
+yx
2
2
+4yx
3
2
,求参数a,6及正交矩阵Q.
选项
答案
二次型,f=2x
1
2
+2x
2
2
+a
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为 f=X
T
AX 其中 [*] 因为Q
T
AQ=B=[*],所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE一A|=λ
3
一(a+4)λ
2
+(4a一b
2
+2)λ+(一3a一2b+2b
2
+2),所以有 λ
3
一(a+4)λ
2
+(4a一b
2
+2)λ+(一3a一2b+2b
2
+2)=(λ一1)
2
(λ一4), 解得a=2,b=1.当λ
1
=λ
2
=1时,由(E一A)X=0得ξ
1
=[*] 由λ
3
=4时,由(4E一A)X=0得ξ
3
=[*] 显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0vW4777K
0
考研数学三
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(Ⅰ)存在f∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
A为三阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量;(Ⅱ)求矩阵A。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解。
假设盒内有10件产品,其正品数为0,1,…,10个是等可能的,今向盒内放入一件正品,然后从盒内随机取出一件产品发现它是正品,则原来盒内有7件正品的概率α=________。
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,依概率收敛于其数学期望,只要{Xn:n≥1}()
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"—2xy’—4y=0,y(0)=0,y’(0)=1(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
已知随机变量X,Y的概率分布分别为P{X=一1}=并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以Ф(x)为极限的是()
设总体X的概率密度为是样本均值。求参数θ的矩估计量。
设有正项级数是它的部分和。(Ⅰ)证明收敛;(Ⅱ)判断级数是条件收敛还是绝对收敛,并给予证明。
随机试题
对周期性麻痹叙述不正确的是
阳虚水泛型肺胀的治则是痰热郁肺型肺胀的治则是
依据《中华人民共和国循环经济促进法》,电力、石油加工等企业,必须在国家规定的范围和期限内,以洁净煤、石油焦、天然气等清洁能源替代燃料油,停止使用不符合国家规定的()。
2011年7月20日,某工业园区当值安全员李某巡逻时,突然发现2号宿舍楼302员工宿舍有浓烟从窗户向外冒出,其意识到302室已发生火警(注:宿舍所属单位员工都在上班),李某即刻用对讲机通知巡逻岗,同时快速冲向宿舍提取灭火器赶赴事发现场。巡逻岗在得到火警信息
税种认定涉及国税、地税两套税务机构的纳税人,税务代理税种认定,下列做法不合适的有( )。
个人住房贷款的信用风险通常是因借款人的()和()下降导致的。
下列选项中,不能设立临时性行政许可的规范是()。
原计划在雕塑周围用若干盆花围成一个4层的空心方阵,但为了整体美观,最后决定将花盆排成2层。4层空心方阵与2层空心方阵相比,最外一层每边少8盆,那么一共有多少盆花?()
提高效度的方法有哪些?【河北师范大学2013;曲阜师范大学2011】
Ateacherwhoisskillfulindeliveringhislecturecanundoubtedly______themindofstudents.
最新回复
(
0
)