首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求矩阵A=的特征值与特征向量,并求正交矩阵P使得PTAP为对角矩阵.
求矩阵A=的特征值与特征向量,并求正交矩阵P使得PTAP为对角矩阵.
admin
2020-06-05
17
问题
求矩阵A=
的特征值与特征向量,并求正交矩阵P使得P
T
AP为对角矩阵.
选项
答案
因为矩阵A的特征多项式为 |A-λE|=[*] =(λ-2)(λ+1)
2
所以A的特征值为λ
1
=2,λ
2
=λ
3
=﹣1. 当λ
1
=2时,解方程组(A-2E)x=0.由 A-2E[*] 得基础解系为α
1
=(1,1,1)
T
,故与特征值λ=2对应的特征向量为c
1
α
1
(c
1
≠0). 当λ
2
=λ
3
=﹣1时,方程组(A-2E)x=0.由 A+E=[*] 得基础解系为α
2
=(﹣1,1,0)
T
,α
3
=(﹣1,0,1)
T
,故与特征值λ=1对应的特征向量为c
2
α
2
+c
3
α
3
,其中c
2
,c
3
不全为零. 对α
2
,α
3
进行正交化,令 β
1
=α
2
=(﹣1,1,0)
T
β
2
=α
3
-[*]=(﹣1,0,1)
T
-[*]=[*](﹣1,﹣1,2)
T
再对α
1
,β
1
,β
2
单位化,令 [*] 取P=(p
1
,p
2
,p
3
)=[*],则P
T
AP=diag(2,﹣1,﹣1).
解析
转载请注明原文地址:https://kaotiyun.com/show/0yv4777K
0
考研数学一
相关试题推荐
设∑是yOz平面上的圆域y2+z2≤1,则(x2+y2+z2)dS为()
设二次型f(χ1,χ2,χ3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型中可用正交变换化为厂的是().(1)2y12+2y22(2)2y12.(3)2y12+2y32.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
设A是n×m矩阵,B是m×n矩阵,其中n≮m.I是n阶单位矩阵.若AB=I.证明B的列向量组线性无关.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设y=y(x)由y=tan(x+y)所确定,试求y’,y".
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且有EX=2DX,试求:(Ⅰ)常数A,B的值;(Ⅱ)E(X2+eχ);(Ⅲ)Y=的分布函数F(y).
设星形线的方程为,试求:它绕x轴旋转而成的旋转体的体积和表面积.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为_________.
设A=,B=(2,3,4),若秩R(A+AB)=2,则t=__________.
随机试题
背景某城市图书馆工程项目,结构主体已施工完成,目前进行装饰装修工程的施工,其中门窗子分部工程中有塑料门窗安装、特种门安装、门窗玻璃安装三个分项工程,在上个月的施工中,主要技术经济参数如下表所示。问题施工项目成本控制内容。
电子焊接中一般焊接剂是什么?助焊剂是什么?
下列哪项病史不是慢性盆腔炎的诊断依据
A、人参B、黄芪C、山药D、党参E、白术常用于气虚欲脱,脉微欲绝的危重证候的药物是
护士遵医嘱为患者缓慢静脉推注10%葡萄糖酸钙10ml,推注约4ml时发现有阻力,局部略肿胀,且抽吸无回血。判断可能的原因是
用电设备台数较少,各台设备容量相差悬殊时,宜采用(),一般用于支干线和配电屏(箱)的负荷计算。
保持国际收支的基本平衡,政策走向是()。
关于程序,正确的理解是_______。
二战期间,下列四次战役的时间先后顺序是()①莫斯科战役②诺曼底登陆③不列颠之战④阿拉曼战役
VisualPerspectivePerspectiveinartisthewaythatartistsrepresentthree-dimensionalobjectsonthetwodimensionsoftheir
最新回复
(
0
)