首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设随机变量X服从正态分布N(0,1),对给定的α(0
[2004年] 设随机变量X服从正态分布N(0,1),对给定的α(0
admin
2021-01-25
40
问题
[2004年] 设随机变量X服从正态分布N(0,1),对给定的α(0<α<1),数u
α
满足P(X>u
α
)=α.若P(|X|
选项
A、u
α/2
B、u
1-α/2
C、u
(1-α)/2
D、u
1-α
答案
C
解析
解一 因X~N(0,1),由P(X>u
α
)=α得到
P(X>u
α
)=1-P(X≤u
α
)=1-Φ(u
α
)=α,即Φ(u
α
)=1-α.
而α=P(|X|<x)=2Φ(x)-1(见命题3.2.3.2(5)),即
对照Φ(u
α
)=1-α知,上式中的x=u
(1-α)/2
.仅(C)入选.
解二 为判定P(|X|<x)=α中的x等于四个数
中的哪一个,只需将P(|x|<x)=α化成P(X>x)等于上述四数中的某一个即可.事实上,因X~N(0,1),其曲线关于y轴对称,故对任意正实数a,均有
因而
比较P(X>u
α
)=α即知上式中x=u
(1-α)/2
.仅(C)入选.
解三 设X的概率密度函数的图形如图3.2.4.3所示,阴影部分的面积为α,即P(|X|<x)=α,整个面积(总面积)为1,由对称性知阴影部分两边的面积相等,且等T(1-α)/2,即P(X>x)=(1-α)/2=P(X<-x).比较P(X>u
α
)=α,便知x=u
(1-α)/2
.仅(C)入选.
解四 因X服从标准正态分布N(0,1),其曲线关于y轴对称,故有P(X>a)=P(X<-α).于是有
α=P(|X|<x)=1-P(|X|≥x)=1-[P(X≥x)+P(X≤-x)]=1-2P(X≥x).
则P(X≥x)=(1-α)/2.由题设有P(X>u
α
)=α,比较得到x=u
(1-α)/2
.仅(C)入选.
注:3.2.3.2 (5)若X服从标准正态分布,其分布函数为Φ(x),则 P(|x|≤a)=2Φ(a)=1, Φ(0)=0.5.
转载请注明原文地址:https://kaotiyun.com/show/10x4777K
0
考研数学三
相关试题推荐
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=________.
设随机变量X服从(0,2)上的均匀分布,则随机变量Y=X2在(0,4)内的密度函数为fY(y)=________.
设二维随机变量(X,Y)的分布函数为φ(2x+1)φ(2y一1),其中φ(x)为标准正态分布函数,则(X,Y)~N(_______).
差分方程yt+1—yt=t2t的通解为_________.
设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于.(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
级数的收敛域为__________。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
当x→0时,无穷小的阶数最高的是().
设事件A与B满足条件AB=则
(2016年)设某商品的最大需求量为1200件,该商品的需求函数为Q=Q(p),需求弹性,p为单价(万元)。(I)求需求函数的表达式;(Ⅱ)求p=100万元时的边际收益,并说明其经济意义。
随机试题
甘麦大枣汤的配伍功效是
TMP与磺胺药合用增强抗菌作用的原因
行于翼颌间隙内的神经是
根据《注册造价工程师管理办法》的规定,注册造价工程师注册有效期限满需继续执业的,应申请延续注册,延续注册的有效期为()年。
发包人收到承包人送交的竣工验收报告后()天内不组织验收,或者在组织验收后14天内不提出修改意见,则视为竣工验收报告已经被认可。
下列各项中,属于国家统一的会计制度的有()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
四部门与三部门经济相比,乘数效应()。(南京大学2012真题)
包豪斯
ThelatterchoicecanwellhelpPresidentObama’sre-electionasithelpedthatofPresidentBillClinton.
最新回复
(
0
)