首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设随机变量X服从正态分布N(0,1),对给定的α(0
[2004年] 设随机变量X服从正态分布N(0,1),对给定的α(0
admin
2021-01-25
51
问题
[2004年] 设随机变量X服从正态分布N(0,1),对给定的α(0<α<1),数u
α
满足P(X>u
α
)=α.若P(|X|
选项
A、u
α/2
B、u
1-α/2
C、u
(1-α)/2
D、u
1-α
答案
C
解析
解一 因X~N(0,1),由P(X>u
α
)=α得到
P(X>u
α
)=1-P(X≤u
α
)=1-Φ(u
α
)=α,即Φ(u
α
)=1-α.
而α=P(|X|<x)=2Φ(x)-1(见命题3.2.3.2(5)),即
对照Φ(u
α
)=1-α知,上式中的x=u
(1-α)/2
.仅(C)入选.
解二 为判定P(|X|<x)=α中的x等于四个数
中的哪一个,只需将P(|x|<x)=α化成P(X>x)等于上述四数中的某一个即可.事实上,因X~N(0,1),其曲线关于y轴对称,故对任意正实数a,均有
因而
比较P(X>u
α
)=α即知上式中x=u
(1-α)/2
.仅(C)入选.
解三 设X的概率密度函数的图形如图3.2.4.3所示,阴影部分的面积为α,即P(|X|<x)=α,整个面积(总面积)为1,由对称性知阴影部分两边的面积相等,且等T(1-α)/2,即P(X>x)=(1-α)/2=P(X<-x).比较P(X>u
α
)=α,便知x=u
(1-α)/2
.仅(C)入选.
解四 因X服从标准正态分布N(0,1),其曲线关于y轴对称,故有P(X>a)=P(X<-α).于是有
α=P(|X|<x)=1-P(|X|≥x)=1-[P(X≥x)+P(X≤-x)]=1-2P(X≥x).
则P(X≥x)=(1-α)/2.由题设有P(X>u
α
)=α,比较得到x=u
(1-α)/2
.仅(C)入选.
注:3.2.3.2 (5)若X服从标准正态分布,其分布函数为Φ(x),则 P(|x|≤a)=2Φ(a)=1, Φ(0)=0.5.
转载请注明原文地址:https://kaotiyun.com/show/10x4777K
0
考研数学三
相关试题推荐
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e一4x+x2+3x+2,则Q(x)=________,该微分方程的通解为________.
将适当的函数填人下列括号内,使等号成立.(1)d()=2dx;(2)d()=3xdx:(3)d()=cosxdx;(4)d()=sinωxdx:(5)d()=1/1+xdx(6)d(
已知随机变量X与Y均服从0—1分布,且E(XY)=则P{X+Y≤1}=_____.
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{X,Y}≤1}=_______.
函数f(x,y)=ln(x2+y2一1)的连续区域是________.
设二次型f(x1,x2,x3)=x12+x22+x32-2x1x2-2x1x3+2ax2x3(a
(2013年)设平面区域D由直线z=3y,y=3y及x+y=8围成,计算
设z=f(x,y)在点(1,2)处存在连续的一阶偏导数,且f(1,2)=2,f’1(1,2)=3,f’2(1,2)=4,φ(x)=f(x,f(x,2x)).求.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设x→a时f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小。②若n>m,则是x一a的n—m阶无穷小。③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
随机试题
患者感觉喜忘如狂,漱水不欲咽,大便色黑易解,宜选用
动态作业的特点是
下列治疗措施适用于急性脊髓炎的是
如何处理被甲类传染病病原体污染的污水、污物、粪便
下列选项中,可去除废水中的胶体和溶解性有机物的是()。
关于风险监管方法,下列表述不正确的是()。
风险监管是一种全面、动态掌握银行情况的监管,其是重点检查和评价涉及银行业务的各个方面,并关注银行的()。
企业或消费者购入原材料、零部件或商品的物流过程是()。
[*]
Whatisthepurposeofthispassage?Theword"it"(Para.6)probablyrefersto______.
最新回复
(
0
)