首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
admin
2018-05-23
31
问题
设向量组α
1
,α
2
,α
3
线性无关,证明:α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
选项
答案
方法一 令k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
)=0,即 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以有[*] 而D=[*]=2≠0,由克拉默法则得k
1
=k
2
=k
3
=0, 所以α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关. 方法二 令A=(α
1
,α
2
,α
3
),B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
), 则B=[*]可逆,所以r(B)=r(A)=3, 故α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/12g4777K
0
考研数学一
相关试题推荐
求函数z=x3+y3一3xy在0≤x≤2,一1≤y≤2上的最大值和最小值.
n阶方阵A有n个两两不同特征值是A与对角矩阵相似的()
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。求P{X=1|Z=0};
设二维随机变量(X,Y)的分布函数为:F(x,y)=A(B+arctan)(C+arctan),-∞<x<+∞,-∞<y<+∞.求:常数A,B,C;
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则方程组AX=b的通解(一般解)是
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_______.
计算,其中∑为半球面的内侧.
已知△ABC的面积为S,三边长分别为a、b、c.在该三角形内求一点P,使该点到AABC三边的距离的乘积为最大.并求出乘积最大时的这三个距离及此乘积的最大值.
设随机变量X与Y相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是()
设某曲线L的线密度μ=x2+y2+z2,其方程为x=e’cost,y=e’sint,z=,-∞<t≤0.求曲线L对Oz轴的转动惯量J;
随机试题
自然灾害对评价的影响属于
下列哪组药专治脾肺气虚
口腔颌面部创伤活动性出血时.最可靠的止血方法是
《中国药典》2010年版一部制剂通则包括在下列哪一项中()
《建设工程安全生产管理条例》是建设工程安全生产管理的重要法规,建筑施工企业和施工现场均要按照这一条例执行。众多事故表明,不遵守这一条例,就容易导致事故的发生。因此,作为专职安全生产管理人员要认真学习这一条例,坚决贯彻这一条例。如果违反这一条例,将受到相应的
某商业广场工程,建筑面积24500m2,地下2层,地下6层,混凝土框架结构,降水方案为真空井点降水。由于该商业广场处于闹市区,不具备自然放坡施工条件,基坑开挖时采用了水泥土桩加锚杆进行支护。施工过程中发生了如下事件:事件一:施工期间,现
教育对政治经济制度的影响表现在()。
设f(x)=且f(x)存在,求a.
やまださんはからだが______ので、よくかぜをひきます。
Itisallverywelltoblametrafficjams,thecostofpetrolandthequickpaceofmodernlife,butmannersontheroadsarebe
最新回复
(
0
)