首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. (I)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. (I)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2016-04-11
50
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解.
(I)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
(I)由于矩阵A的各行元素之和均为3,所以 [*] 因为Aα
1
=0,Aα
2
=0,即 Aα
1
=0α
1
,Aα
2
=0α
2
故由定义知λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
为A的属于特征值0的两个线性无关特征向量;λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
为A的属于特征值3的特征向量. 总之,A的特征值为0,0,3.属于特征值0的全体特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零),属于特征值3的全体特征向量为k
3
α
3
(k
3
≠0). (Ⅱ)对α
1
,α
2
正交化.令ξ
1
=α
1
=(一1,2,一1)
T
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/NAw4777K
0
考研数学一
相关试题推荐
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过.
=________.
设f(x)在[a.b]上连续,任取xi∈[a,b](i=1,2,…,n)任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…kn)f(ξ).
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
设y=y(x)由x=∫π/2tet-usinu/3du,y=∫π/2tet-ucos2udu确定,则曲线y=y(x)在t=π/2对应点处的切线方程为________。
设A,B是n阶可逆矩阵,且A-1~B-1,则下列结果①AB~BA②A~B③A2~B2④AT~BT正确的个数为()
设有摆线(0≤t≤2π),求:(Ⅰ)曲线绕直线y=2旋转所得到的旋转体体积;(Ⅱ)曲线形心的纵坐标。
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
设[(x5+7x4+2)a-x]=b,b≠0,试求常数a,b的值.
设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.
随机试题
视物旋转动荡,如在舟车之上,称为()
关于协调性宫缩乏力正确的是
月经病的治疗原则重在
腹腔中最容易损伤的脏器是
管内径大于()mm的柔性管道,回填施工中应在管内设竖向支撑。
导致社会不公平的原因包括()。
荷马史诗包括___________和___________两部分。
学校指派张老师带学生参加校方和电视台合作的教育活动节目。在活动过程中学生不慎跌倒摔伤。对学生跌倒摔伤应该承担责任的是()。
对于一元线性回归模型,以se表示估计标准误差,r表示样本相关系数,则有()。
下列程序的输出结果是______。#include<iostream>usingnamespacestd;voidfun(int&rf){rf*2;}intmain(){intnum
最新回复
(
0
)