首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. (I)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. (I)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2016-04-11
76
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解.
(I)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
(I)由于矩阵A的各行元素之和均为3,所以 [*] 因为Aα
1
=0,Aα
2
=0,即 Aα
1
=0α
1
,Aα
2
=0α
2
故由定义知λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
为A的属于特征值0的两个线性无关特征向量;λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
为A的属于特征值3的特征向量. 总之,A的特征值为0,0,3.属于特征值0的全体特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零),属于特征值3的全体特征向量为k
3
α
3
(k
3
≠0). (Ⅱ)对α
1
,α
2
正交化.令ξ
1
=α
1
=(一1,2,一1)
T
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/NAw4777K
0
考研数学一
相关试题推荐
=________.
设函数其中g(x)二阶连续可导,且g(0)=1.求f’(x).
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设D={(x,y)|x2+y2≤t2,x≥0,y≥0,t≥0},f(x)是连续函数,f(0)=0,且满足,求f(x)在[0,+∞)上的表达式。
设相似于对角矩阵,则a=________。
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。求λ的值及矩阵A;
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
设ξ1=为矩阵A=的一个特征向量.(Ⅰ)求常数a,b的值及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
随机试题
自我传播
在()下可以显示幻灯片中插入的图表对象。
下述药物中。具有行气止痛功效的是
一般来说,房地产投资风险分析主要包括()等分析。
设备基础混凝土一般应分层浇筑,下面正确的做法有()。
2位分在同一房间的游客因生活习惯不同发生了争执,导游员刚好走过他们的房间门外得知了这一情况。这时导游员应采取的做法是()。
生物学上生物子代和亲代间相似现象称为()。
在一个减肥计划开始前,病人被测试每天消耗的卡路里的平均数目。该计划中的医生给每个病人安排饮食,使其每日卡路里的摄人量低于正常摄入量的一定比值。医生预测,遵从该饮食的每个病人的体重可能会下降到预测重量。然而,病人没有减去预测中的重量。下面哪一项如果
OntheOriginofBodyLanguageTheOriginofBodyLanguagehasalottodowiththeemotions.Theemotionsareahottopicof
Wateristasteless,odorless,andnearlycolorless(ithasaslighthintofblue).Itisa【C1】______thatisessentialtoallkn
最新回复
(
0
)