求下列隐函数的微分或导数: (Ⅰ)设ysinx-cos(x-y)=0,求dy; (Ⅱ)设方程确定y=y(x),求y′与y″.

admin2016-10-26  48

问题 求下列隐函数的微分或导数:
(Ⅰ)设ysinx-cos(x-y)=0,求dy;
(Ⅱ)设方程确定y=y(x),求y′与y″.

选项

答案(Ⅰ)利用一阶微分形式不变性求得 d(ysinx)-dcos(x-y)=0, 即 sinxdy+ycosxdx+sin(x-y)(dx-dy)=0, 整理得 [sin(x-y)-sinx]dy=[ycosx+sin(x-y)]dx, 故 dy=[*]dx. (Ⅱ)将原方程两边取对数,得等价方程 [*]ln(x2+y2)=arctan[*]. (*) 现将方程两边求微分得 [*] 化简得xdx+ydy=xdy-ydx,即 (x-y)dy=(x+y)dx, 由此解得 y′=[*]. 为求y″,将y′满足的方程(x-y)y′=x+y两边再对x求导,即得 (1-y′)y′+(x-y)y″=1+y′[*] 代入y′表达式即得 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/19u4777K
0

最新回复(0)