首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,且A的行和相等。 A能否相似对角化,若能,请求出正交矩阵Q使得QTAQ为对角矩阵,若不能,请说明理由。
已知A=,且A的行和相等。 A能否相似对角化,若能,请求出正交矩阵Q使得QTAQ为对角矩阵,若不能,请说明理由。
admin
2017-01-16
51
问题
已知A=
,且A的行和相等。
A能否相似对角化,若能,请求出正交矩阵Q使得Q
T
AQ为对角矩阵,若不能,请说明理由。
选项
答案
将a和b的值代入矩阵得 [*] 可知A是实对称矩阵,故A一定可以相似对角化。 由|λE-A|=0可得 (λ+1)
2
(λ-5)=0, 解得λ=-1(二重根)和5。 由(-E-A)x=0可得线性方程组的基础解系为 (1,0,-1)
T
,(0,1,-1)
T
, 即特征值-1所对的两个线性无关的特征向量为 α
1
=(1,0,-1)
T
,α
2
=(0,1,-1)
T
。 又因矩阵A的行和为5,所以特征值5对应的一个特征向量为α
3
=(1,1,1)
T
。 将上述三个向量正交化,得 β
1
=(1,0,-1)
T
, β
2
=α
2
-[*])
T
, β
3
=(1,1,1)
T
, 将其单位化即得正交矩阵 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1Cu4777K
0
考研数学一
相关试题推荐
设f(x)可导,求下列函数的导数:
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则Fy’(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的____________条件.
随机试题
A.经别B.别络C.奇经D.孙络十二经脉气血充盛有余时,则渗注于
某施工单位对某一省会新建机场的目视助航工程投标,标书中施工方法和施工技术措施中写出了施工测量、电缆保护管施工、电缆排管和入孔井施工、电缆敷设和隔离变压器安装,助航灯具安装;接地极施工;非标结构制作安装;变电站土建施工方案和主要分项工程施工方法和技术措施。
利率违规行为的表现形式有()。
EAN码中由厂商自行制定的码是从右()数字。
验收作业的程序为()。
灾害:伤亡:救助
Justafewyearsago,agraduatefromBrownUniversitymedicalschoolhadjustaninklingabouthowtocarefortheelderly.Now
只要不起雾,飞机就能起飞。以下哪项正确地表达了上述断定?Ⅰ.如果飞机按时起飞,则一定没有起雾。Ⅱ.如果飞机不按时起飞,则一定起雾。Ⅲ.除非起雾,否则飞机按时起飞。
设α=(1,一1,a)T是的伴随矩阵A*的特征向量,其中r(AT)=3,则a=___________。
A、Analyzethemrationally.B、Drawupadetailedto-dolist.C、Turntoothersforhelp.D、Handlethemonebyone.B
最新回复
(
0
)