首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
admin
2017-12-29
76
问题
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)e
y
+f(y)e
x
,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
选项
答案
将x=y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(0)=0,为证明f’(x)存在,则由导数的定义 [*] = f(x)+f’(0)ex=f(x)+ae
x
。 所以对任意x,f’(x)都存在,且f’(x)=f(x)+ae
x
。 解此一阶线性微分方程,得 f(x)= e
∫dx
[∫ae
x
e
—∫dx
dx+C]=e
x
(ax+C), 又因f(0)=0,得C=0,所以f(x)=axe
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/1FX4777K
0
考研数学三
相关试题推荐
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一(f’(x))2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
方程组的通解是________.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
微分方程xdy一ydx=ydy的通解是________.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
级数x2n-1的收敛域为__________.
判别级数的敛散性:dx()·
随机试题
下列哪些选项应按非法拘禁罪定罪论处?()
成就需要理论
男,62岁。高血压病史多年,晨练时突发头痛、呕吐、右侧偏瘫,体检:深昏迷,左侧瞳孔大,光反射消失,诊断为
小儿感冒容易产生兼症是因为( )。
以持久性的心境低落为特征的神经症称为()。
下列收入应计入我国GDP的有()。
把下列句子组合成语意连贯的一段话:①但是这正是无上的美的境界,绝好的自然诗篇。②这总比淡漠无味胜过百倍,我们以为最难堪而又极欲逃避的惟有淡漠无味。③虽然这些虫声会引起劳人的感叹,秋士的伤怀,独客的微喟,思妇的低泣。④
坚持和完善社会主义初级阶段基本经济制度,要积极发展混合所有制经济。混合所有制经济是()
下面不属于软件设计阶段任务的是
ThingstobeTaughtinEverySchoolI.Introduction:Importanceofstudents’abilitytodealwiththerealworld.A.Speaker’so
最新回复
(
0
)