首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=_______
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=_______
admin
2019-07-13
49
问题
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),成立f(x+y)=f(x)e
y
+f(y)e
x
,且f’(0)存在等于a,a≠0,则f(x)=_______
选项
答案
axe
x
解析
由f’(0)存在,设法去证对一切x,f’(x)存在,并求出f(x).
将y=0代入(x+y)=f(x)=f(x)e
y
+f(y)e
x
,得f(x)=f(x)+f(0)e
x
,所以f(0)=0.
令△x→0,得 f’(x)=f(x)+e
x
f’(0)=f(x)+ae
x
,
所以f’(x)存在.解此一阶微分方程,得
f(x)=e
x
(∫ae
x
.e
x
dx+C)=e
x
(ax+c).
因f(0)=0,所以C=0,从而得f(x)=axe
x
,如上所填.
转载请注明原文地址:https://kaotiyun.com/show/ePc4777K
0
考研数学一
相关试题推荐
计算∫0xf(t)g(x-t)dt(x≥0),其中当x≥0时,f(x)=x,而
设D是由曲线y=Sx3与直线x=-1,y=1所围成的有界闭区域,则[x2+sin(xy)]dσ=()
设的收敛半径、收敛区间与收敛域.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.证明:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n-1),f(n)(x0)≠0(n≥2),证明:(1)当n为偶数且f(n)(x0)<0时,f(x)在x0取得极大值;(2)当n为偶数且f(n)(x0)>0时,f(x)在x0取得极小值.
在电视剧《乡村爱情》中,谢广坤家中生了一对龙凤胎,专业上叫异性双胞胎.假设男孩的出生率为51%,同性双胞胎是异性双胞胎的3倍,已知一双胞胎第一个是男孩,试求第二个也是男孩的概率.
设随机变量X的概率密度为求X的分布函数.
设f(x)在区间(0,1)内可导,且导函数f’(x)有界,证明:
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40cm,则μ的置信度为0.95的置信区间是________。(Φ(1.96)=0.975,Φ(1.645)=0.95)
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40(cm),则μ的置信度为0.95的置信区间是________.
随机试题
水体富营养化可能对人体健康产生的直接危害是
固有鼻腔呼吸区黏膜上皮类型是
根据我国进口商品战略的演变过程,我国不鼓励引进或进口:
下列车船中,应缴纳车船使用税的是()。
下列选项中,不属于构成商业秘密条件的是()。
关于《中华人民共和国产品质量法》立法原则的说法,错误的是()。
精益管理能够将低成本战略和差别化战略的要素结合在一起。
在VisualFoxPro中与关系无关的是()。
计算机病毒是指___________。
【B1】【B14】
最新回复
(
0
)