首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
设矩阵 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
admin
2018-07-26
96
问题
设矩阵
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
选项
答案
由 |λE-A| [*] =λ(λ-2)
2
=0 得A的特征值为λ
1
=λ
2
=2,λ
3
=0. 记对角矩阵 [*] 因A是实对称矩阵,故存在正交矩阵P,使得 P
-1
AP=P
T
AP=D 所以A=PDP
-1
于是 B=(kE+A)
2
=(kPP
-1
+PDP
-1
)
2
=[P(kE+D)P
-1
]
2
=P(kE+D)P
-1
P(kE+D)P
-1
=P(kE+D)
2
P
-1
[*] 由此可得 [*] 亦可由A的特征值为:2,2,0,得kE+A的特征值为:k+2,k+2,k,进而得B=(kE+A)
2
的特征值为:(k+2)
2
,(k+2)
2
,k
2
,从而得实对称矩降B相似于对角阵A. 由上面的结果立刻得到:当k≠-2,且k≠0时,B的特征值均为正数,这时B为正定矩阵.
解析
本题主要考查实对称矩阵及其多项式相似于对角矩阵的问题.注意,若方阵A相似于对角阵,则A的多项也必相似于对角阵.事实上,若存在可逆矩阵P,使
P
-1
AP=D
则对任意正整数m,有P
-1
A
m
P=(P
-1
AP)
m
=D
m
由此可知A的任一多项式也必相似于对角阵.例如,由
P
-1
(A
3
+2A-3E)P=P
-1
A
3
P+2P
-1
AP-3E
即知A的多项式A
3
+2A-3E相似于对角阵.本题第1种解法就是这个思想.
另外,B为实对称矩阵,所以B必相似于对角阵A,而且A的主对角线元素就是B的全部特征值,因而,只要求出了B的全部特征值,也就求出了对角阵A.这就是本题第2种解法的思想.
还需注意,本题只要求求出B的相似对角矩阵,不必求出相似变换的矩阵P.
转载请注明原文地址:https://kaotiyun.com/show/1HW4777K
0
考研数学三
相关试题推荐
求y’’-7y’+12y=x满足初始条件y(0)=的特解.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
设4阶矩阵A的秩为2,则r(A*)=_____.
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
设F(x)=,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)
曲线y=的渐近线方程为_______.
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
随机试题
只能用于转账,不得提取现金的支票是()
十二经脉的命名主要结合了哪几个方面的内容
贷款类银行信托理财产品的风险有()。
企业对境外经营财务报表进行折算时,资产负债表各项目均采用资产负债表日的即期汇率折算,利润表各项目均采用交易发生日的即期汇率或与交易发生日即期汇率近似的汇率折算。()
与蛋白质代谢有关的维生素是()。
以下哪项,如果是真的,最能有力地驳斥上述结论?
视频采集卡基本功能是将模拟视频信号经过取样、量化以后转换为数字图像并输入到主机。视频采集的模拟视频信号可以来自( )。
A、No,Idon’t.B、Yes,Idon’t.C、No,Ido.A
Readthefollowingtextaboutmarketing.Choosethebestsentencefromtheoppositepagetofilleachofthegaps.Foreachgap(
EveryyeartheaverageAmericanemployeeworks100hoursmorethanBriton,300hoursmorethanFrenchand400hoursmorethanGe
最新回复
(
0
)