首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
设矩阵 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
admin
2018-07-26
150
问题
设矩阵
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
选项
答案
由 |λE-A| [*] =λ(λ-2)
2
=0 得A的特征值为λ
1
=λ
2
=2,λ
3
=0. 记对角矩阵 [*] 因A是实对称矩阵,故存在正交矩阵P,使得 P
-1
AP=P
T
AP=D 所以A=PDP
-1
于是 B=(kE+A)
2
=(kPP
-1
+PDP
-1
)
2
=[P(kE+D)P
-1
]
2
=P(kE+D)P
-1
P(kE+D)P
-1
=P(kE+D)
2
P
-1
[*] 由此可得 [*] 亦可由A的特征值为:2,2,0,得kE+A的特征值为:k+2,k+2,k,进而得B=(kE+A)
2
的特征值为:(k+2)
2
,(k+2)
2
,k
2
,从而得实对称矩降B相似于对角阵A. 由上面的结果立刻得到:当k≠-2,且k≠0时,B的特征值均为正数,这时B为正定矩阵.
解析
本题主要考查实对称矩阵及其多项式相似于对角矩阵的问题.注意,若方阵A相似于对角阵,则A的多项也必相似于对角阵.事实上,若存在可逆矩阵P,使
P
-1
AP=D
则对任意正整数m,有P
-1
A
m
P=(P
-1
AP)
m
=D
m
由此可知A的任一多项式也必相似于对角阵.例如,由
P
-1
(A
3
+2A-3E)P=P
-1
A
3
P+2P
-1
AP-3E
即知A的多项式A
3
+2A-3E相似于对角阵.本题第1种解法就是这个思想.
另外,B为实对称矩阵,所以B必相似于对角阵A,而且A的主对角线元素就是B的全部特征值,因而,只要求出了B的全部特征值,也就求出了对角阵A.这就是本题第2种解法的思想.
还需注意,本题只要求求出B的相似对角矩阵,不必求出相似变换的矩阵P.
转载请注明原文地址:https://kaotiyun.com/show/1HW4777K
0
考研数学三
相关试题推荐
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
求下列二阶常系数齐次线性微分方程的通解:(Ⅰ)2y’’+y’-y=0;(Ⅱ)y’’+8y’+16y=0;(Ⅲ)y’’-2y’+3y=0.
求微分方程(x-4)y4dx-x3(y2-3)dy=0的通解.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
设A是n阶反对称矩阵,x是n维列向量,如Ax=Y,证明x与y正交.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
计算行列式Dn=之值.
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
随机试题
要成为高效团队的最后一个必需条件是_________。
组成药物中含有人参、白术、茯苓、炙甘草的方剂是()
细菌经紫外线照射会发生DNA损伤,为修复这种损伤,细菌合成DNA修复酶的基因表达增强,这种现象称为
A、水利尿B、渗透性利尿C、尿崩症D、尿失禁E、延髓受损静脉滴注甘露醇可引起
计算单代号搭接网络的时间参数时,若某项中间工作的最早开始时间为负值,则应当()。
在Excel中,要在单元格中输入公式,应先输入“=”,再输入表达式。()
凡《证券法》中界定的内幕信息不能成为证券投资分析的信息来源。()
2005年全国劳动模范和先进工作者表彰大会于4月30日在北京隆重举行,受表彰者包括30多位私营企业主和20多位个体户,这是他们第一次被纳入全国劳模候选范围。()
J.Martin将建立企业模型的过程分为3个阶段,下述Ⅰ.开发表示企业各职能范围的模型Ⅱ.扩展模型,使它们表示企业各处理过程Ⅲ.定义企业处理过程所需数据类Ⅳ.继续扩展模型,使它能表示企业各处理过程哪个不属于建立企业模
DifferentTypesofLearningI.ThedefinitionoflearningA.AprocessofpeopleexperiencingrelationshipbetweeneventsB.【B1】
最新回复
(
0
)