首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设分块矩阵X=是正交矩阵,其中A是m×n阶矩阵,C是n×n阶矩阵.求证:A,C均为正交矩阵,且B=O.
设分块矩阵X=是正交矩阵,其中A是m×n阶矩阵,C是n×n阶矩阵.求证:A,C均为正交矩阵,且B=O.
admin
2020-09-25
19
问题
设分块矩阵X=
是正交矩阵,其中A是m×n阶矩阵,C是n×n阶矩阵.求证:A,C均为正交矩阵,且B=O.
选项
答案
由题意知:[*] 即:[*] 因此我们得到 AA
T
+BB
T
=E
m
, ① BC
T
=O,CB
T
=O,CC
T
=E
n
, 因此C为正交矩阵,故C可逆.所以C
-1
(CB
T
)=B
T
,因此B
T
=O从而可得B=0,代入①得AA
T
=E
m
,因此A也是正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Jx4777K
0
考研数学三
相关试题推荐
曲线y=x2与直线y=x+2所围成的平面图形面积为________.
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
设f(x)的一个原函数为=______.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为(Ⅰ)求P{Y≤EY};(Ⅱ)求Z=X+Y的概率密度.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
随机试题
简述产业资本循环采取的三种职能形式。
目前能确定的诊断是根本治疗原则是
男,55岁,因肾病综合征(病理为膜性肾病)入院治疗,在应用利尿剂和糖皮质激素的治疗过程中突然持续性腰痛,尿量减少,下肢水肿加重,蛋白尿显著增多伴肉眼血尿,血肌酐较前增高,B超示双肾较前增大。最可能的原因是
饴糖的使用注意有
中央分隔带纵向盲沟的反滤层材料可选择()。
某公司2002年成立,2003年1月开始营业,在此期间发生登记注册费4000元,差旅费1000元,其他费用2500元。建造工程的借款利息为5000元,购买设备的外币折算损失为4000元,该公司的开办费为()元。
判断级数的敛散性。
Thebookisdead.Technologyhaskilledit.Thelibrariesoftheworldaredoomingtobecomemuseums.Americans,however,【M1】___
--Whydoyoudrinksomuchcoffee?--Well,______itdoesn’tkeepmeawakeinthenights,Iseenoharminit.
IfyourchildisaskingforUggbootsorapriceyhottoyfortheholidays,it’stimeforateachablemoment.Evenifyourkidh
最新回复
(
0
)