首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-12-29
93
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:α
1
,α
2
,…,α
s
是线性无关的一组n维向量,因此r(α
1
,α
2
,…,α
n
)=n。对任一n维向量b,因为α
1
,α
2
,…,α
s
,b的维数n小于向量的个数n+1,故α
1
,α
2
,…,α
n
,b线性相关。 综上所述r(α
1
,α
2
,…,α
n
,b)=n。 又因为α
1
,α
2
,…,α
n
线性无关,所以n维向量b可由α
1
,α
2
,…,α
n
线性表示。 充分性:已知任一n维向量b都可由α
1
,α
2
,…,α
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由α
1
,α
2
,…,α
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(α
1
,α
2
,…,α
n
), 又α
1
,α
2
,…,α
n
是一组n维向量,有r(α
1
,α
2
,…,α
n
)≤n。 综上,r(α
1
,α
2
,…,α
n
)=n。所以α
1
,α
2
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/1LX4777K
0
考研数学三
相关试题推荐
幂级数的收敛域为________.
A,B均是n阶矩阵,且AB—A+B.证明:A—E可逆,并求(A—E)-1.
设向量α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αTβ,求:A能否相似于对角阵,说明理由.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
求差分方程yt+1一ayt=2t+1的通解.
求下列积分:
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
设区域D1为以(0,0),(1,1),为顶点的四边形,D2为以为顶点的三角形,而D由D,与D:合并而成。随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(x)、fY(y)。
随机试题
某病毒性心肌炎病人,每两个窦性搏动后出现一个室性早搏,需及早( )
健康教育的核心是
下列入汤剂需后下的药物是
A.细胞水肿B.脂质沉积C.结缔组织玻璃样变D.血管壁玻璃样变E.细胞内玻璃样变肝细胞胞浆内嗜酸性小体
个体产生新奇独特的、有社会价值的产品能力或特性称之为______。
如果比较全日制学生的数量,东江大学的学生数是西海大学的70%,如果比较学生总数量(全日制学生加上成人教育学生),则东江大学的学生数是西海大学的120%。由上文最能推出以下哪项结论?
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=________.
A、 B、 C、 D、 C
LachlanCommunityFairTheLachlanCommunityFairwJlTaKeplaceonSaturdaythe19thofOctober.Thisisapopularannuale
Myanmar’soppositionleader,DawAungSanSuuKyi,confirmedonTuesdaythatshewouldrunfromaseatinthecountry’snewParl
最新回复
(
0
)