首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-12-29
66
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:α
1
,α
2
,…,α
s
是线性无关的一组n维向量,因此r(α
1
,α
2
,…,α
n
)=n。对任一n维向量b,因为α
1
,α
2
,…,α
s
,b的维数n小于向量的个数n+1,故α
1
,α
2
,…,α
n
,b线性相关。 综上所述r(α
1
,α
2
,…,α
n
,b)=n。 又因为α
1
,α
2
,…,α
n
线性无关,所以n维向量b可由α
1
,α
2
,…,α
n
线性表示。 充分性:已知任一n维向量b都可由α
1
,α
2
,…,α
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由α
1
,α
2
,…,α
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(α
1
,α
2
,…,α
n
), 又α
1
,α
2
,…,α
n
是一组n维向量,有r(α
1
,α
2
,…,α
n
)≤n。 综上,r(α
1
,α
2
,…,α
n
)=n。所以α
1
,α
2
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/1LX4777K
0
考研数学三
相关试题推荐
微分方程的通解是________.
设,求实对称矩阵B,使A=B2.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
求下列函数的导数:y=aax+axx+axa+aaa(a>0);
求下列极限.
求下列极限.
求级数的和函数.
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则
随机试题
患者,一身悉肿,肢体沉重,心腹胀满,上气喘急,小便不利,舌苔白腻,脉沉缓,治宜选用的方剂是
我国全日制普通中学的修业年限为()。
设函数y=y(x)由参数方程
已知函数y=(x+1)ex是一阶线性微分方程y’+2y=f(x)的解,求二阶常系数线性微分方程y’’+3y’+2y=f(x)的通解.
在设计文件注明的工程合理使用年限内,下列应被保证在正常情况下安全使用的建筑分部有()。
用总产出减去中间投入计算国内生产总值的方法是()。
下列关于马斯洛需要层次理论的说法中,不正确的是( )。
苏联学者加里培林提出智力技能按阶段形成,即()、物质或物质化动作阶段、出声的外部言语动作阶段、无声的外部言语阶段、内部言语活动阶段。
学前教育过程中最基本的、最重要的人际关系是()
如下图所示,某校园网使用2.5Gbps的POS技术与CERNET相连,校园内部使用OSPF路由协议,与CERNET连接使用静态路由协议。请阅读以下R3的部分配置信息,并补充空白处的配置命令或参数,按题目要求完成路由器的相关配置。R3的POS接口配置
最新回复
(
0
)