首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-12-29
74
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:α
1
,α
2
,…,α
s
是线性无关的一组n维向量,因此r(α
1
,α
2
,…,α
n
)=n。对任一n维向量b,因为α
1
,α
2
,…,α
s
,b的维数n小于向量的个数n+1,故α
1
,α
2
,…,α
n
,b线性相关。 综上所述r(α
1
,α
2
,…,α
n
,b)=n。 又因为α
1
,α
2
,…,α
n
线性无关,所以n维向量b可由α
1
,α
2
,…,α
n
线性表示。 充分性:已知任一n维向量b都可由α
1
,α
2
,…,α
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由α
1
,α
2
,…,α
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(α
1
,α
2
,…,α
n
), 又α
1
,α
2
,…,α
n
是一组n维向量,有r(α
1
,α
2
,…,α
n
)≤n。 综上,r(α
1
,α
2
,…,α
n
)=n。所以α
1
,α
2
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/1LX4777K
0
考研数学三
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设0≤un≤,则下列级数中一定收敛的是()
微分方程的通解是________.
设,求实对称矩阵B,使A=B2.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
求级数的和函数.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
设区域D1为以(0,0),(1,1),为顶点的四边形,D2为以为顶点的三角形,而D由D,与D:合并而成。随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(x)、fY(y)。
随机试题
郑某等人多次预谋通过爆炸抢劫银行运钞车。为方便跟踪运钞车,郑某等人于2012年4月6日杀害一车主,将其面包车开走(事实一)。后郑某等人制作了爆炸装置,并多次开面包车跟踪某银行运钞车,了解运钞车到某储蓄所收款的情况。郑某等人摸清运钞车情况后,于同年6月8日将
设A是m×n的非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是()。
图示三铰支架上作用两个大小相等、转向相反的力偶m1和m2,其大小均为100kN·m,支架重力不计。支座B的反力RB的大小和方向为( )。
能反映一个组织系统中各项工作之间逻辑关系的组织工具是()
某连锁娱乐企业是增值税一般纳税人,主要经营室内游艺设施。2021年11月经营业务如下:(1)当月游艺收入价税合计636万元,其中门票收入为300万元、游戏机收入为336万元。当月通过税控系统实际开票价款为280万元。(2)当月以融资性售后回租形式融资,
1990年,我们党的十四大报告进一步系统地阐述了建设有中国特色社会主义理论的主要内容。( )
根据《合同法》规定,违反合同一方要承担违约责任,下列不属于承担违约责任方式的是()。
8个人比赛国际象棋,约定每两人之间都要比赛一局,胜者得2分,平局得1分,负的不得分。在进行了若干局比赛之后,发现每个人的分数都不一样。问最多还有几局比赛没比?()
数据字典是各类数据描述的集合,它通常包括5个部分,即数据项、数据结构、数据流、【】和处理过程。
Lightlevelsarecarefullycontrolledtofallwithinanacceptablelevelfor______readingconvenience.
最新回复
(
0
)