首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-12-29
72
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:α
1
,α
2
,…,α
s
是线性无关的一组n维向量,因此r(α
1
,α
2
,…,α
n
)=n。对任一n维向量b,因为α
1
,α
2
,…,α
s
,b的维数n小于向量的个数n+1,故α
1
,α
2
,…,α
n
,b线性相关。 综上所述r(α
1
,α
2
,…,α
n
,b)=n。 又因为α
1
,α
2
,…,α
n
线性无关,所以n维向量b可由α
1
,α
2
,…,α
n
线性表示。 充分性:已知任一n维向量b都可由α
1
,α
2
,…,α
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由α
1
,α
2
,…,α
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(α
1
,α
2
,…,α
n
), 又α
1
,α
2
,…,α
n
是一组n维向量,有r(α
1
,α
2
,…,α
n
)≤n。 综上,r(α
1
,α
2
,…,α
n
)=n。所以α
1
,α
2
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/1LX4777K
0
考研数学三
相关试题推荐
设f(x)=将f(x)展开为x的幂级数;
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
交换下列累次积分的积分次序.
设a为常数,f(x)=aex一1一x一,则f(x)在区间(一∞,+∞)内()
设矩阵,且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
求级数的和函数.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
设f(x)在(-∞,+∞)上具有连续导数,且f’(0)≠0.令F(x)=求证:(Ⅰ)若f(x)为奇函数,则F(x)也是奇函数.(Ⅱ)(0,0)是曲线y=F(x)的拐点.
随机试题
A.随机观察、会谈法B.定式访谈法C.定式观察法D.评定量表法E.心理测验
肺癌所致阻塞性肺炎有以下临床征象.除了
申请成为国家圃或专业圃的受理及审核机构均为直属检验检疫局。( )
下列税种中,属于财产税的是()。
心智技能与操作技能相比,具有()特点。
下面标点符号使用正确的一项是()。
在世界杯金靴奖的争夺中,如果斯内德没有获得金靴奖并且穆勒助攻次数比斯内德多的话,弗兰将获得金靴奖。补充以下哪项,能够推出斯内德获得了金靴奖?
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有二阶连续偏导数,求
Besides"American"characteristics-individualism,self-reliance,informality,punctualityanddirectness,therearealsosome"n
CurrentChallengesConfrontingU.S.HigherEducationThefirstchallenge:forceofthemarketplace•Currentsituation:—pr
最新回复
(
0
)